• Title, Summary, Keyword: Visual spectral sensitivity

Search Result 7, Processing Time 0.053 seconds

Visual spectral sensitivity of dark-adapted rockfish (Sebastes inermis) in LED light source (LED 광원에 대한 암순응시 볼락 (Sebastes inermis)의 시각 스펙트럼 민감도)

  • Heo, Min-A;Kang, Gyeong-Mi;Shin, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.102-110
    • /
    • 2015
  • The characteristics of aquatic light fields are generally reflected in the visual systems of fishes inhabiting them. Therefore, research on light sensitivity of fish is useful to explain the correlation between the visual function and habitat, behavior and distribution of fish. Rockfish is an important species in coastal ecology and also one of the main species for culturing in Korea. To make a contribution on the maintenance of the fish resources and understanding the ecology of the rockfish, the visual spectral sensitivities of the dark-adapted rockfishes were measured in the range of visible light (405~660 nm) using a light source of light-emitting diodes (LEDs). In order to assess electrophysiological response of the fish, the ERGs (electroretinograms) of the dark-adapted rockfishes were recorded on a data logger (12 bits) and a laptop computer. Juvenile (n=5; weight: $20.3{\pm}5.2g$; total length: $10.3{\pm}0.7cm$) and adult (n=5; weight: $87.8{\pm}21.8g$; total length: $18.1{\pm}1.3cm$) rockfishes were used in experiment. The visual threshold of juvenile and adult rockfish were 11.66 (log quanta/$cm^2/s$) and 11.81 (log quanta/$cm^2/s$) in 574 nm, respectively. The peak wavelength of the spectral sensitivity in the dark-adapted juvenile and adult rockfish was commonly 551 nm (series of green color). Collectively, these results demonstrate that the rockfish has suitable visual capabilities for inhabiting coastal water in Korea.

Evolution of Visual Pigments and Related Molecules

  • Hisatomi, Osamu;Yamamoto, Shintaro;Kobayashi, Yuko;Honkawa, Hanayo;Takahashi, Yusuke;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.41-43
    • /
    • 2002
  • In photoreceptor cells, light activates visual pigments consisting of a chromophore (retinal) and a protein moiety (opsin). Activated visual pigments trigger an enzymatic cascade, called phototransduction cascade, in which more than ten phototransduction proteins are participating. Two types of vertebrate photoreceptor cells, rods and cones, play roles in twilight and daylight vision, respectively. Cones are further classified into several subtypes based on their morphology and spectral sensitivity. Though the diversities of vertebrate photoreceptor cells are crucial for color discrimination and detection of light over a wider range of intensities, the molecular mechanism to characterize the photoreceptor types remains unclear. We investigated the amino acid sequences of about 50 vertebrate opsins, and found that these sequences can be classified into five fundamental subfamilies. Clear relationships were found between these subfamilies and their characteristic spectral sensitivities. In addition to opsins, we studied other phototransduction proteins. The amino acid sequences of phototransduction proteins can be classified into a few subfamilies. Even though their spectral sensitivity is considerably different, cones fundamentally share the phototransduction protein isoforms which are different from those found in rods. It is suggested that the difference in phototransduction proteins between rods and cones is responsible for their sensitivity to light. Isoforms and their selective expression may characterize individual photoreceptor cells, thus providing us with physiological functions such as color vision and daylight/twilight visions.

  • PDF

Synergism Between Zinc and Taurine in the Visual Sensitivity of the Bullfrog's Eye

  • Kim, Hyun-Jung;Kim, You-Young
    • Journal of Photoscience
    • /
    • v.7 no.3
    • /
    • pp.115-121
    • /
    • 2000
  • Although there are high concentrations of zinc and taurine in ocular tissue, their exact role and correlation in the visual process are not clear. The purpose of present study was to clarity this point using electroretinogram (ERG) recording and spectrophotometer measurements before and after zinc and taurine treatment in bullfrog's eye. The optimal zinc concentration used in this study was 10$^{-2}$ M ZnCl$_2$120 ${mu}ell$/12$m\ell$ ringer solution while the optimal turine concentration was 10$^{-2}$ M taurine 12${mu}ell$/12$m\ell$ ringer solution. For the effects of zinc and taurine on the retinal function, the changes of ERG parameters (especially threshold and b-wave) and absorption spectra were observed before and after treatment. It is noteworthy that high concentrations of zinc and taurine present in the retinal pigment epithelium and the retina. Our results indicate that dark-adapted ERG threshold became elevated and the peak amplitude of b-wave was increased with zinc and taurine treatment. Furthermore there are some synergism effects between zinc and taurine as a result of co-treatment. In spectral scan, absorbance increment due to zinc and taurine treatment was shown over the whole range of spectral range (300-750 nm) with some differences in absorbance increment depending on the case of treatment. As the results of above we believe that zinc and taurine, which are abundant in the retinal pigment epithelium and the retina particularly, may be essential factors for visual process, have some synergism with each other and be required to improve the visual sensitivity during visual adaptation.

  • PDF

Integration of ERS-2 SAR and IRS-1 D LISS-III Image Data for Improved Coastal Wetland Mapping of southern India

  • Shanmugam, P.;Ahn, Yu-Hwan;Sanjeevi, S.;Manjunath, A.S.
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.351-361
    • /
    • 2003
  • As the launches of a series of remote sensing satellites, there are various multiresolution and multi-spectral images available nowadays. This diversity in remotely sensed image data has created a need to be able to integrate data from different sources. The C-band imaging radar of ERS-2 due to its high sensitivity to coastal wetlands holds tremendous potential in mapping and monitoring coastal wetland features. This paper investigates the advantages of using ERS-2 SAR data combined with IRS-ID LISS-3 data for mapping complex coastal wetland features of Tamil Nadu, southern India. We present a methodology in this paper that highlights the mapping potential of different combinations of filtering and integration techniques. The methodology adopted here consists of three major steps as following: (i) speckle noise reduction by comparative performance of different filtering algorithms, (ii) geometric rectification and coregistration, and (iii) application of different integration techniques. The results obtained from the analysis of optical and microwave image data have proved their potential use in improving interpretability of different coastal wetland features of southern India. Based visual and statistical analyzes, this study suggests that brovey transform will perform well in terms of preserving spatial and spectral content of the original image data. It was also realized that speckle filtering is very important before fusing optical and microwave data for mapping coastal mangrove wetland ecosystem.

Multi-Spectral Reflectance of Warm-Season Turfgrasses as Influenced by Deficit Irrigation (난지형 잔디의 가뭄 스트레스 상태로 인한 멀티스팩트럴 반사광 연구)

  • Lee, Joon-Hee;Trenholm, Laurie. E.;Unruh, J. Bryan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Remote sensing using multispectral radiometry may be a useful tool to detect drought stress in turf. The objective of this research was to investigate the correlation between drought stress and multispectral reflectance (MSR) from the turf canopy. St. Augustinegrass (Stenotaphrum secundatum[Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore paspalum Paspalum vaginatum Swartz.), 'Empire' zoysiagrass (Zoysia japonica Steud.), and 'Pensacola' bahiagrass (Paspalum notatumFlugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at 100%, 80%, 60%, or 40% of evapotranspiration (ET). Weekly evaluations included: a) shoot quality, leaf rolling, leaf firing b) soil moisture, chlorophyll content index; c) photosynthesis and d) multispectral reflectance. All the measurements were correlated with MSR data. Drought stress affected the infrared spectral region more than the visible spectral region. Reflectance sensitivity to water content of leaves was higher in the infrared spectral region than in the visible spectral region. Grasses irrigated at 100% and 80% of ET had no differences in normalized difference vegetation indices (NDVI), leaf area index (LAI), and stress indices. Grasses irrigated at 60% and 40% of ET had differences in NDVI, LAI, and stress indices. All measured wavelengths except 710nm were highly correlated (P < 0.0001) with turf visual quality, leaf firing, leaf rolling, soil moisture, chlorophyll content index, and photosynthesis. MSR could detect drought stress from the turf canopy.

Increase of Visual sensitivity by Zinc, Taurine, and Hypothermic-effect in Bullfrog's Eye (황소개구리 안구에서의 아연, 타우린, 저온효과에 의한 시각 감수성 증진)

  • Kim, Hyun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.23-33
    • /
    • 2007
  • It has been reported high concentrations of zinc and taurine in ocular tissue, especially the retina-choroid, and the presence of physiological levels of zinc and taurine in these tissues seem essential for their normal function. In addition, several studies have reported temperature as another effector to the visual sensitivity. But, in spite of many studies, there are still remained many questions about their function and correlation in visual adaptation system. The purpose of present study was to clarify these points using electroretinogram(ERG) recording and absorption spectra scanning, before and after zinc and taurine treatments and hypothermic-effect in bullfrog(Rana catesbeiana) which is one of the poikilothermal animal. The optimal zinc concentration used in this study was determined $10^{-4}M$ while the optimal taurine concentration was 10-5 M, and temperature change for hypothermic-effect went through '$25^{\circ}C {\rightarrow}0^{\circ}C{\rightarrow}25^{\circ}C$'. In ERG recording, it is obtained that dark-adapted threshold became elevated and b-wave amplitudes was increased with zinc and taurine treatment and hypothermic-effect. In absorption spectra scanning, there is distinct absorbance increment over the whole spectral range(400~750 nm) after zinc and taurine treatment and hypothermic-effect. Furthermore there are some synergism effects between zinc and taurine as well as between zinc and hypothermic-effect as a result of co-treatment, respectively.

  • PDF

Long-term Results of Taking Anti-oxidant Nutritional Supplement in Intermediate Age-related Macular Degeneration (중기 나이관련황반변성 환자에서 항산화영양제 복용 후 장기 관찰 결과)

  • Bang, Seul Ki;Kim, Eung Suk;Kim, Jong Woo;Shin, Jae Pil;Lee, Ji Eun;Yu, Hyeong Gon;Huh, Kuhl;Yu, Seung-Young
    • Journal of The Korean Ophthalmological Society
    • /
    • v.59 no.12
    • /
    • pp.1152-1159
    • /
    • 2018
  • Purpose: We prospectively investigated clinical changes and long-term outcomes after administration of the drugs recommended by the Age-Related Eye Disease Study-2 to patients with intermediate age-related macular degeneration (AMD). Methods: This prospective multicenter study enrolled 79 eyes of 55 patients taking lutein and zeaxanthin. The primary endpoint was contrast sensitivity; this was checked every 12 months for a total of 36 months after treatment commenced. The secondary endpoints were visual acuity, central macular thickness, and drusen volume; the latter two parameters were assessed using spectral domain optical coherence tomography. Results: The mean patient age was $72.46{\pm}7.16years$. Contrast sensitivity gradually improved at both three and six cycles per degree. The corrected visual acuity was $0.13{\pm}0.14logMAR$ and did not change significantly over the 36 months. Neither the central macular thickness nor drusen volume changed significantly. Conclusions: Contrast sensitivity markedly improved after treatment, improving vision and patient satisfaction. Visual acuity, central retinal thickness, and drusen volume did not deteriorate. Therefore, progression of AMD and visual function deterioration were halted.