• Title, Summary, Keyword: Video Compression

Search Result 692, Processing Time 0.055 seconds

Embedded Video Compression Scheme using Wavelet Transform and 3-D Block Partition (Wavelet 변환과 3-D 블록분할을 이용하는 Embedded 비디오 부호화기)

  • Yang, Change-Mo;Lim, Tae-Beom;Lee, Seok-Pil
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.190-192
    • /
    • 2004
  • In this paper, we propose a low bit-rate embedded video compression scheme with 3-D block partition coding in the wavelet domain. The proposed video compression scheme includes multi-level 3-dimensional dyadic wavelet decomposition, raster scanning within each subband, formation of block, 3-D partitioning of block, and adaptive arithmetic entropy coding. Although the proposed video compression scheme is quit simple, it produces bit-stream with good features, including SNR scalability from the embedded nature. Experimental results demonstrate that the proposed video compression scheme is quit competitive to other good wavelet-based video coders in the literature.

  • PDF

Extracting Graphics Information for Better Video Compression

  • Hong, Kang Woon;Ryu, Won;Choi, Jun Kyun;Lim, Choong-Gyoo
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.743-751
    • /
    • 2015
  • Cloud gaming services are heavily dependent on the efficiency of real-time video streaming technology owing to the limited bandwidths of wire or wireless networks through which consecutive frame images are delivered to gamers. Video compression algorithms typically take advantage of similarities among video frame images or in a single video frame image. This paper presents a method for computing and extracting both graphics information and an object's boundary from consecutive frame images of a game application. The method will allow video compression algorithms to determine the positions and sizes of similar image blocks, which in turn, will help achieve better video compression ratios. The proposed method can be easily implemented using function call interception, a programmable graphics pipeline, and off-screen rendering. It is implemented using the most widely used Direct3D API and applied to a well-known sample application to verify its feasibility and analyze its performance. The proposed method computes various kinds of graphics information with minimal overhead.

A full-Hardwired Low-Power MPEG4@SP Video Encoder for Mobile Applications (모바일 향 저전력 동영상 압축을 위한 고집적 MPEG4@SP 동영상 압축기)

  • Shin, Sun Young;Park, Hyun Sang
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.392-400
    • /
    • 2005
  • Highly integrated MPEG-4@SP video compression engine, VideoCore, is proposed for mobile application. The primary components of video compression require the high memory bandwidth since they access the external memory frequently. They include motion estimation, motion compensation, quantization, discrete cosine transform, variable length coding, and so on. The motion estimation processor adopted in VideoCore utilizes the small-size local memories such that the video compression system accesses external memory as less frequently as possible. The entire video compression system is divided into two distinct sub-systems: the integer-unit motion estimation part and the others, and both operate concurrently in a pipelined architecture. Thus the VideoCore enables the real-time high-quality video compression with a relatively low operation frequency.

Improve Compression Efficiency of 360degree VR Video by Correcting Perspective in Cubemap Projection (Cubemap Projection 360도 VR 비디오에서 시점 보정을 통한 압축 효율 향상 방법)

  • Yoon, Sung Jea;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.136-139
    • /
    • 2017
  • Recently, many companies and consumers has shown a lot of interest toward VR(Virtual Reality), so many VR devices such as HMD(Head mounted Display) and 360 degree VR camera are released on the market. Current encoded 360 degree VR video uses the codec which originally made for the conventional 2D video. Therefore, the compression efficiency isn't optimized because the en/decoder does not consider the characteristics of the 360 degree VR video. In this paper, we propose a method to improve the compression efficiency by using the reference frame which compensates for the distortions caused by characteristics the 360 degree VR video. Applying the proposed method we were able to increase the compression efficiency by providing better prediction.

Performance Comparison of HEVC and H.264/AVC Standards in Broadcasting Environments

  • Dissanayake, Maheshi B.;Abeyrathna, Dilanga L.B.
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.483-494
    • /
    • 2015
  • High Efficiency Video Coding (HEVC) is the most recent video codec standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goal of this newly introduced standard is for catering to high-resolution video in low bandwidth environments with a higher compression ratio. This paper provides a performance comparison between HEVC and H.264/AVC video compression standards in terms of objective quality, delay, and complexity in the broadcasting environment. The experimental investigation was carried out using six test sequences in the random access configuration of the HEVC test model (HM), the HEVC reference software. This was also carried out in similar configuration settings of the Joint Scalable Video Module (JSVM), the official scalable H.264/AVC reference implementation, running on a single layer mode. According to the results obtained, the HM achieves more than double the compression ratio compared to that of JSVM and delivers the same video quality at half the bitrate. Yet, the HM encodes two times slower (at most) than JSVM. Hence, it can be concluded that the application scenarios of HM and JSVM should be judiciously selected considering the availability of system resources. For instance, HM is not suitable for low delay applications, but it can be used effectively in low bandwidth environments.

A Study on the Video Compression Pre-processing Method for Video Transmission and Target Detection in Ultra-narrowband Environment (초협대역 환경에서 영상전송 및 표적탐지를 위한 영상압축 전처리 방법에 대한 연구)

  • Im, Byungwook;Baek, Seungho;Jun, Kinam;Kim, Dokyoung;Jung, Juhyun;Kim, Daesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.28-36
    • /
    • 2020
  • Due to the continued demand for high-definition video, video compression technology is steadily developing and the High Efficiency Video Coding standard was established in 2013. However, despite the development of this compression technology, it is very difficult to smoothly transmit VGA-level videos in Ultra-narrowband environments. In this paper, the target information preprocessing algorithm is presented for smooth transmission of target images moving in forest or open-terrain in Ultra-narrowband environment. In addition, for algorithm verification, the target information preprocessing algorithm was simulated and the simulated results were compared with the video compression result without the algorithm being applied.

Video object segmentation and frame preprocessing for real-time and high compression MPEG-4 encoding (실시간 고압축 MPEG-4 부호화를 위한 비디오 객체 분할과 프레임 전처리)

  • 김준기;이호석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.147-161
    • /
    • 2003
  • Video object segmentation is one of the core technologies for content-based real-time MPEG-4 encoding system. For real-time requirement, the segmentation algorithm should be fast and accurate but almost all existing algorithms are computationally intensive and not suitable for real-time applications. The MPEG-4 VM(Verification Model) has provided basic algorithms for MPEG-4 encoding but it has many limitations in practical software development, real-time camera input system and compression efficiency. In this paper, we implemented the preprocessing system for real-time camera input and VOP extraction for content-based video coding and also implemented motion detection to achieve the 180 : 1 compression rate for real-time and high compression MPEG-4 encoding.

Constant Quality Motion Compensated Temporal Filtering Video Compression using Multi-block size Motion Estimation and SPECK (다중 블록 크기의 움직임 예측과 SPECK을 이용한 고정 화질 움직임 보상 시간영역 필터링 동영상 압축)

  • Park Sang-Ju
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2
    • /
    • pp.153-163
    • /
    • 2006
  • We propose a new video compression method based on MCTF(motion compensated temporal filtering) with constant quality. SPECK is an efficient image compression coding method of encoding DWT coefficients. Especially SPECK method is very efficient for coding the motion compensated residual image which usually has larger amounts of high frequency components than the natural images. And proposed multi block size hierarchical motion estimation technique is more efficient than classical block matching algorithm with fixed block size both in estimation precision and operation costs. Proposed video method based on MCTF video compression can also support multi-frame rate decoding with reasonable complexity. Simulation results showed that proposed method outperforms H.263 video compression standard.

An Industry-Strength DVR System using an Efficient Compression Algorithm (효율적인 압축 알고리즘을 이용한 실용화 수준의 DVR 시스템)

  • 박영철;안재기
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.3
    • /
    • pp.243-250
    • /
    • 2004
  • We describe a practical implementation of DVR (Digital Video Recording) system. And we propose a new image compression algorithm, that input video signal is divided into two parts, a moving target and a non-moving background part to achieve efficient compression of image sequences. This algorithm reorganizes a target area and a back-ground area by use of Macro Block(MB) unit on encoding scheme. The proposed algorithm allows high quality image reconstruction at low bit rates.

Computer generated hologram compression using video coding techniques (비디오 코딩 기술을 이용한 컴퓨터 형성 홀로그램 압축)

  • Lee, Seung-Hyun;Park, Min-Sun
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.767-774
    • /
    • 2005
  • In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video images. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. The proposed algorithm illustrated that it have better properties for reconstruction and compression rate than the previous methods.

  • PDF