• Title, Summary, Keyword: Vehicle-track interaction

Search Result 83, Processing Time 0.031 seconds

Vibration Isolation of Wave Barriers Constructed Near a Shallow Tunnel (저심도 터널과 인접한 방진벽의 지반진동 저감효과)

  • Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.567-577
    • /
    • 2015
  • This paper presents an assessment method of the ground vibration level with a combination of measured data and an analytic method. The basic concept of the method is similar to that in FRA(Federal Railway Administration) manual for detailed vibration analyses. However, going into detail, the assessment method was modified for a feasible evaluation of the vibration reduction effects of diverse types of wave barriers. The force density was evaluated in a vehicle-track interaction analysis and the transfer mobility of vibration was analyzed through a 2-D ground vibration analysis. The calculated 2-D transfer mobility was corrected to incorporate transfer characteristics of actual ground vibration by comparing the previously measured data and analysis results. Nine types of vibration reduction effects of wave barriers were analyzed on a shallow tunnel section of an urban railway where numerous civil complaints had actually been filed.

Analysis of Running Safety According to Changes of Guard Rail Length on F10/F12 Turnout (F10/F12 분기기에서의 가드레일 길이 변화에 따른 주행안전성 해석)

  • Eom, Beom Gyu;Kim, Sung Jong;Lee, Seung Il;Lee, Hi Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.723-730
    • /
    • 2013
  • The speed-limit regulation on a turnout is the main factor inhibiting the speed-up of conventional lines. The specified speed for a train moving through a turnout system is lower than that for a train traveling over the general track. This is done to ensure the running safety of a railway vehicle moving through a turnout. In this study, the shape change example of the guard rail component of a turnout in the Daegu Metropolitan Transit Corporation (DTRO) system was studied. A theoretical examination of the geometrical interaction formula according to wheel/rail shape at the turnout was conducted. Running safety analysis by changing the length of the guard rail on the F10/F12 turnout using the developed analysis techniques (by VI-Rail) was achieved, and the effect on railway safety was examined accordingly.

Drone-based Power-line Tracking System (드론 기반의 전력선 추적 제어 시스템)

  • Jeong, Jongmin;Kim, Jaeseung;Yoon, Tae Sung;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.773-781
    • /
    • 2018
  • In recent years, a study of power-line inspection using an unmanned aerial vehicle (UAV) has been actively conducted. However, relevant studies have been conducting power-line inspection with an UAV operated by manual control, and they have developed just power-line detection algorithm on aerial images. To overcome limitations of existing research, we propose a drone-based power-line tracking system in this paper. The main contributions of this paper are to operate developed system under configured environment and to develop a power-line detection algorithm in real-time. Developed system is composed of the power-line detection and the image-based tracking control. To detect a power-line in real-time, a region of interest (ROI) image is extracted. Furthermore, clustering algorithm is used in order to discriminate the power-line from background. Finally, the power-line is detected by using the Hough transform, and a center position and a tilt angle are estimated by using the Kalman filter to control a drone smoothly. We design a position controller and an attitude controller for image-based tracking control, and both controllers are designed based on the proportional-derivative (PD) control method. The interaction between the position controller and the attitude controller makes the drone track the power-line. Several experiments were carried out in environments where conditions are similar to actual environments, which demonstrates the superiority of the developed system.