• Title, Summary, Keyword: Threshing machine

Search Result 11, Processing Time 0.046 seconds

Development of The Bean Threshing System using Independent Driving (독립구동방식의 콩 탈곡기 시스템 개발)

  • Jang, BongChoon;Kim, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4124-4129
    • /
    • 2013
  • This purpose of this research is to build up a prototype of bean threshing machine after three dimensional design which can be driven independently by engine and hydraulic equipments and wheels. To accomplish the functionality of bean threshing machine the cutters are placed in a swirl type on a threshing drum the thresing capability would be improved. Also a exit pipe was designed to clear the remains to solve the past problems that the normal machines had. A fan was designed to blow to send the waste only to the outside. Only clean beans will be transferred through a blowing fan wind power to exit pipe and the system was designed to help the worker to collect the beans in front of the machine. This threshing machine using independent driving engine which can provide the power to drive the system and do the threshing is the first developed technology in domestic area through the University and Industry cooperation.

Study on Cone Type Thresher (I) (원추형(圓錐型) 탈곡기(脱糓機)에 관(關)한 연구(硏究))

  • Lee, Seung Kyu
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.48-59
    • /
    • 1981
  • The major limiting factor on the determination of combine capacity is the frequent occurence of clogging over the some parts of machine when the crop is wet in the case of Japanese self-feeding type combine. And in the case of American conventional combine having big separating parts, the great grain loss and damage occur when the machine is used for rice harvesting. This experiment was carried out to develop the new type threshing and separating equipment. Proto-type thresher which consist of a conical threshing drum and a conical separating sieve rotating around the threshing cone was constructed and tested. In the case of 800 rpm of threshing cone speed, average threshing loss was below 1 percent, separating loss was about 1 percent, grain damage was about 0.4 percent, and average total power required was about 2.6 PS. This design has some problems such as higher power required or wrapping problems under the conditions of feeding long damp straw. But, compared with the conventional combine or thresher, this machine certainly has some potentials for this approach to combine development. The crop feed rate must be increased through improvement of the feeding portion of the threshing cone. And it is required to investigate further about some parameters causing wrapping phenomena.

  • PDF

Development of Threshing Machine for Shatter-Resistant Sesame

  • Lee, Kyou Seung;Noh, Hyun Kwon
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.110-114
    • /
    • 2015
  • Purpose: A threshing machine for shatter-resistant sesame was designed and developed in this study. Methods: Two types of sesame (shatter-resistant and conventional) were tested using the developed sesame threshing system. Three types of serrated bars were designed and evaluated through performance tests, in terms of the ratio of unthreshed sesame. Results: In the case of conventional sesame, the ratio of unthreshed sesame did not show any difference with bar type or cylinder rotation speed. For shatter-resistant sesame, however, the ratio of unthreshed sesame decreased with increased cylinder rotating speed for all three types of bar. Conclusions: These results are useful for the construction and utilization of an efficient threshing harvester. The type-L bar showed the best result in the energy equation.

Study on the Threshing and Separating Performanee of the Newly Developed Throw-in Type Thresher (투입식 탈곡기의 탈곡 및 선별 성능에 관한 연구)

  • 이승규;정창규김성래
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3878-3884
    • /
    • 1975
  • This study was carried out to develop the throw-in type thresher with its size as small as possible. Developing the smallest possible size of the throw-in type thresher has been very important to increase mobility and to reduce the machine price. The thresher that developed for this purpose was tested as to threshing and separation performance for the samples collected in eight catch boxes under the concave while threshing. The amount of grain collected in each compartments was measured and the threshing and separating pattern along the total span of the threshing drum was determined. The performance of separating and threshing units of the test thresher and threshing loss was evaluated by use of the developed grain separating apparatus and the method for measuring the grain separating performance of threshers. The results are summarized as follows; 1. The unthreshed grain (drum losses) and semi-threshed grain did not appeared at all throughout the treatments. 2. When threshed by making use of the developed throw-in type thresher, the threshing grain loss at about 25 per cent grain moisture was about one-half when threshed at about 18 per cent grain moisture. 3. And its grain separating loss in higher feed rate was decreased in comparison with that of lower feed rate. These results suggests that the throw-in type thresher may be suitable for wet threshing and for higher feed rate of threshing. 4. Above 60 per cent of total grain passing through concave fell through the screen within a scant 30 cm from the feeding inlet. This threshing pattern may suggest that major threshing action may be finished before about one third of cylinder length. The required separating load extended over the whole drum span is so defferent that separating elements should be redesigned so as to accomodate this variable pattern of separation load. 5. It was apparent from the experiment that the length of the threshing drum of the throw-in type thresher could be reduced from 1285mm to about 1050mm without increasing grain separation loss greatly.

  • PDF

Separation Characteristic of Shatter Resistant Sesame After Threshing

  • Noh, Hyun Kwon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.299-303
    • /
    • 2014
  • Purpose: This study set out to develop a machine for separating shatter-resistant sesame after threshing. Methods: Three grades of sieve and different blower speeds were tested for a separation system that had been designed specifically for shatter-resistant sesame. Performance tests were run to evaluate the sieve and blower systems in terms of the sesame separation and loss ratios. Results: Tests of the first separation stage using the sieve system revealed the optimum sieve perforation size to be 5 mm. Tests of the second separation stage using the blower system identified the optimum blower speed as being 220 rpm. The optimum separation and loss ratios, of 96.5% and 3.5%, respectively, were obtained at a blower speed of 220 rpm. Conclusions: These results will be useful for the design, construction, and operation of threshing harvesters. For shatter-resistant sesame, an optimum blower speed of 220 rpm was identified.

Factors Affecting Wet-Paddy Threshing Performance (탈곡기의 제작동요인이 벼의생탈곡성능에 미치는 영향)

  • 남상일;정창주;류관희
    • Journal of Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-14
    • /
    • 1980
  • Threshing operation may be one of the most important processes in the paddy post-production system as far as the grain loss and labor requirement are concerned . head-feeding type threshers commercially available now in Korea originally were developed for threshing dry paddy in the range of 15 to 17 % in wet basis. However, threshing wet-paddy with the grain moisture content above 20 % has been strongly recommended, especially for new high-yielding Indica -type varieties ; (1) to reduce high grain loss incurred due to the handling operations, and (2) to prevent the quantitative and qualitative loss of milled -rice when unthreshed grains are rewetted due to the rainfall. The objective of this study were to investigate the adaptability of both a head-feeding type thresher and a throw-in type thresher to wet-paddy , and to find out the possiblilities of improving the components of these threshers threshing. Four varieties, Suweon 264 and Milyang 24 as Tongil sister line varieties, minehikari and Jinhueng as Japonica-type varieties, were used at the different levels of the moisture content of grains. Both the feed rate and the cylinder speed were varied for each material and each machine. The thresher output quality , composition of tailing return, and separating loss were analyzed from the sampels taken at each treatment. A separate experiment for measurement opf the power requirement of the head-feeding type thresher was also performed. The results are summarized as follows : 1. There was a difference in the thresher output quality between rice varieties. In case of wet-paddy threshing at 550 rpm , grains with branchlet and torn heads for the Suweon 264 were 12 % and 7 % of the total output in weight, respectively, and for the Minehikari 4.5 % and 2 % respectively. In case of dry paddy threshing , those for the Suweon 264 were 8 % and 5% , and for the Minehikari 4% and 1% respectively. However, those for the Milyang 23 , which is highly susceptable to shattering, were much lower with 1 % and 0.5% respectively, regardless of the moisture content of the paddy. Therefore, it is desirable to breed rice varieties of the same physical properties as well as to improve a thresher adaptable to all the varieties. Torn heads, which increased with the moisture content of rall the varieties except the Milyang 23 , decreased as the cylinder speed increased, but grains with branchlet didnt decrease. The damaged kernels increased with the cylinder speed. 3. The thresher output quality was not affected much by the feed rate. But grains with branchlet and torn heads increased slightly with the feed rate for the head-feeding type thresher since higher resistance lowered at the cylinder speed. 4. In order to reduce grains with branchlet and torn heads in wet-paddy threshing , it is desirable to improve the head-feeding type thresher by developing a new type of cylinder which to not give excess impact on kernels or a concave which has differenct sizes of holes at different locations along the cylinder. 5. For the head-feeding type thresher, there was a difference in separating loss between the varieties. At the cylinder speed of 600 rpm the separating losses for the Minehikari and the Suweon 264 were 1.2% and 0.6% respectively. The separating loss of the head-feeding type thresher was not affected by the moisture content of paddy while that of the Mini-aged thresher increased with the moisture content. 6. From the analysis of the tailings return , to appeared that the tailings return mechanism didn't function properly because lots of single grains and rubbishes were unnecessarily returned. 7. Adding a vibrating sieve to the head-feeding type thresher could increase the efficiency of separation. Consequently , the tailing return mechanism would function properly since unnecessary return could be educed greatly. 8. The power required for the head-feeding type thresher was not affected by the moisture content of paddy, but the average power increased linearly with the feed rate. The power also increased with the cylinder speed.

  • PDF

A Study for Injuries due to Agricultural Machines in Kyeongsangnam Province (경상남도 농촌지역의 농기계손상에 관한 조사연구)

  • Kim, Byung-Sung;Chon, Hae-Jung
    • Journal of agricultural medicine and community health
    • /
    • v.20 no.1
    • /
    • pp.15-23
    • /
    • 1995
  • As compared before, agricultural machines are used more commonly instead of animal or manpower in rural areas and the injuries due to those are common. This study was conducted by questionnaire method in order to find out the current status of injuries due to agricultural machines for farmers who was selected from three Gun's in Kyeongsangnam Province. The study subjects were 385 persons in all(210 male persons, 175 female reasons) and the study period was from July through September 1993. The results were as follows; 1. The injury rate due to agricultural machines was high in male(p<0.05), and it was higher in younger age group and higher educated group. 2. The injury occurred high in summer and autumn seasons(77.6%), in the afternoon(60.6%), and during harvest(35.2%). 3. The major injuries were contusion, fracture, amputation in order and the injured sites were arms, legs, and chest in order. 31.7% of the injured farmers had been admitted, and they were treated at hospitals, home, drugstores and health centers in order. 4. The casualty damage was highest by cultivators, and agricultural instruments, threshing machine were followed. Among traumatic injuries concerned with cultivators contusions were most common, and fractures, amputations were followed. In case of agricultural instruments bruises were most common, and incisions, contusion were followed. In case of threshing machines fractures were most common and contusion, bruise were followed.

  • PDF

Characteristics of Sweet and Super Sweet Corn Seeds Shelled at Different Seed Moisture and Threshing Method Conditions (단옥수수와 초당옥수수 탈곡 시 종자 수분함량과 탈곡방법에 따른 종자 특성)

  • Lee, Suk-Soon;Yun, Sang-Hee;Yang, Seung-Kyu;Hong, Seung-Beom
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.632-638
    • /
    • 2006
  • Characteristics of sweet (sugary, su) and super sweet (shrunken-2, sh2) corn seeds shelled by different threshing methods at different moisture content status were studied. Hybrid seeds of a su (Early Sunglow ${\times}$ Golden Cross Bantam 70, GCB 70) and a sh2 (Xtrasweet 82 ${\times}$Fortune) were dried to moisture content of 12, 15, 18, and 21%. Hand shelling did not give any mechanical damages to seeds, while an electrical corn thresher gave some visible mechanical damages. The emergence rate of hand shelled seeds was higher than that of machine shelled seeds by $6{\sim}14%$ for a su and by $9{\sim}18%$ for a sh2 hybrid depending on seed moisture contents in cold test. The optimum seed moisture content to reduce mechanical threshing damages and to improve seed quality was 15% for su and 12% for sh2 hybrid seeds. At the optimum seed moisture contents, germination rate at $25^{\circ}C$, emergence rate in the cold test and ${\alpha}-amylase$ activity were highest, while the percentage of damaged seeds and leakage of total sugars and electrolytes in soaking water were minimized.

An Optimum Harvest Time for Chinese Milk Vetch (Astragalus sinicus L.) Seed Production (자운영 종자생산을 위한 적정 수확시기 구명)

  • Lee, Byung-Jin;Choi, Zhin-Ryong;Kim, Sang-Yeol;Oh, Seong-Hwan;Kim, Jun-Hwan;Hwang, Woon-Ha;Ahn, Jong-Woong;Oh, Byeong-Geun;Ku, Yeon-Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.70-74
    • /
    • 2008
  • To determine an optimum harvest time for chinese milk vetch (CMV) seed production, the seeds were harvested at 4 times, according to 25, 30, 35, and 40 day after flowering (DAF), in Miryang, southern part of Korea. CMV plants were manually harvested at each time and seed threshing was done by rice threshing machine. Seed yield, 1,000-seed weight, germinability, and hard coat ratio were investigated. Seed yield was the highest, 53.9 kg/300 kg by dry weight (DW) of CMV plant, at 35 DAF. 1,000-seed weight increased according to seed harvest time from 25 DAF to 40 DAF when it was 3.10 g. The germination ratios of seeds harvested at 4 times were not significantly different when the seeds stored until August 1. In case of long period of CMV seeds stored, the seeds harvested later showed higher germination rate. On the other hand, because the hard coat ratio causing germination inhibition was declined with an increase of storage period, it was higher in the seeds harvested later. There was no difference among the seeds harvested at 4 times at October 1. In conclusion, it was presumed that an optimum harvest time for CMV seed production should be at 35 DAF considering seed yield, weight and germinability.

A Study on the Utilzation of Two Furrow Combine (2조형(條型) Combine의 이용(利用)에 관(關)한 연구(硏究))

  • Lee, Sang Woo;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 1976
  • This study was conducted to test the harvesting operation of two kinds of rice varieties such as Milyang #15 and Tong-il with a imported two furrow Japanese combine and was performed to find out the operational accuracy of it, the adaptability of this machine, and the feasibility of supplying this machine to rural area in Korea. The results obtained in this study are summarized as follows; 1. The harvesting test of the Milyang #15 was carried out 5 times from the optimum harvesting operation was good regardless of its maturity. The field grain loss ratio and the rate of unthreshed paddy were all about 1 percent. 2. The field grain loss of Tong-il harvested was increased from 5.13% to 10.34% along its maturity as shown in Fig 1. In considering this, it was needed that the combine mechanism should be improved mechanically for harvesting of Tong-il rice variety. 3. The rate of unthreshed paddy of Tong-il rice variety of which stem was short was average 1.6 percent, because the sample combine used in this study was developed on basisof the long stem variety in Japan, therefore some ears owing to the uneven stem of Tong-il rice could nat reach the teeth of the threshing drum. 4. The cracking rates of brown rice depending mostly upon the revolution speed of the threshing drum(240-350 rpm) in harvesting of Tong-il and Milyang #15 were all below 1 percent, and there was no significance between two varieties. 5. Since the ears of Tong-il rice variety covered with its leaves, a lots of trashes was produced, especially when threshed in raw materials, and the cleaning and the trashout mechanisms were clogged with those trashes very often, and so these two mechanisms were needed for being improved. 6. The sample combine of which track pressure was $0.19kg/cm^2$ could drive on the soft ground of which sinking was even 25cm as shown in Fig 3. But in considering the reaping height adjustment, 5cm sinking may be afford to drive the combine on the irregular sinking level ground without any readjustment of the resaping height. 7. The harvesting expenses per ha. by the sample combine of which annual coverage area is 4.7 ha. under conditions that the yearly workable days is 40, percentage of days being good for harvesting operation is 60%, field efficiency is 56%, working speed is 0.273m/sec, and daily workable hours is 8 hrs is reasonable to spread this combine to rural area in Korea, comparing to the expenses by the conventional harvesting expenses, if mechanical improvement is supplemented so as to harvest Tong-il rice. 8. In order to harvest Tong-il rice, the two furrow combine should be needed some mechanical improvements that divider can control not to touch ears of paddy, the space between the feeding chain and the thrshing drum is reduced, trash treatment apparatus must be improved, fore and rear adjust-interval is enlarged, and width of track must be enlarged so as to drive on the soft ground.

  • PDF