• Title, Summary, Keyword: Temperature-dependent Hydrolysis

Search Result 33, Processing Time 0.034 seconds

Temperature-Dependent Hydrolysis Reactions of U(VI) Studied by TRLFS

  • Lee, J.Y.;Yun, J.I.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • Temperature-dependent hydrolysis behaviors of aqueous U(VI) species were investigated with time-resolved laser fluorescence spectroscopy (TRLFS) in the temperature range from 15 to $75^{\circ}C$. The formation of four different U(VI) hydrolysis species was measured at pHs from 1 to 7. The predominant presence of $UO{_2}^{2+}$, $(UO_2)_2(OH){_2}^{2+}$, $(UO_2)_3(OH){_5}^+$, and $(UO_2)_3(OH){_7}^-$ species were identified based on the spectroscopic properties such as fluorescence wavelengths and fluorescence lifetimes. With an increasing temperature, a remarkable decrement in the fluorescence lifetime for all U(VI) hydrolysis species was observed, representing the dynamic quenching behavior. Furthermore, the increase in the fluorescence intensity of the further hydrolyzed U(VI) species was clearly observed at an elevated temperature, showing stronger hydrolysis reactions with increasing temperatures. The formation constants of the U(VI) hydrolysis species were calculated to be $log\;K{^0}_{2,2}=-4.0{\pm}0.6$ for $(UO_2)_2(OH){_2}^{2+}$, $log\;K{^0}_{3,5}=-15.0{\pm}0.3$ for $(UO_2)_3(OH){_5}^+$, and $log\;K{^0}_{3,7}=-27.7{\pm}0.7$ for $(UO_2)_3(OH){_7}^-$ at $25^{\circ}C$ and I = 0 M. The specific ion interaction theory (SIT) was applied for the extrapolation of the formation constants to infinitely diluted solution. The results of temperature-dependent hydrolysis behavior in terms of the U(VI) fluorescence were compared and validated with those obtained using computational methods (DQUANT and constant enthalpy equation). Both results matched well with each other. The reaction enthalpies and entropies that are vital for the computational methods were determined by a combination of the van't Hoff equation and the Gibbs free energy equation. The temperature-dependent hydrolysis reaction of the U(VI) species indicates the transition of a major U(VI) species by means of geothermal gradient and decay heat from the radioactive isotopes, representing the necessity of deeper consideration in the safety assessment of geologic repository.

Characterization of Levan Hydrolysis Activity of Levansucrase from Zymomonas mobilis ATCC 10988 and Rahnella aquatilis ATCC 33071

  • Jang, Ki-Hyo;Kang, Soon-Ah;Kim, Chul-Ho;Lee, Jae-Cheol;Kim, Mi-Hyun;Son, Eun-Wha;Rhee, Sang-Ki
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.482-484
    • /
    • 2007
  • To investigate production and hydrolysis of levan, the levansucrase enzymes from Zymomonas mobilis ATCC 10988 and Rahnella aquatilis ATCC 33071 were used. The optimum temperature of R. aquatilis levansucrase for levan formation was $37^{\circ}C$, whereas that of Z. mobilis was $4^{\circ}C$, under the experimental conditions. Both levansucrases also catalyzed the reverse levan hydrolysis reaction. Levan hydrolysis reactions from both levansucrases were temperature dependent; high temperature ($20^{\circ}C$) was more favorable than low temperature ($4^{\circ}C$) by 4 times. Fructose was the only product from hydrolysis reaction by both levansucrases, showing that both levansucrases mediated the hydrolysis reaction of exo-enzyme acting. In both enzymes, initial levan hydrolysis activity was almost accounted to 1% of initial levan formation activity. The results allow the estimation of the fructose release rate in enzyme processing conditions.

Optimization of Subcritical Water Hydrolysis of Rutin into Isoquercetin and Quercetin

  • Kim, Dong-Shin;Lim, Sang-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.2
    • /
    • pp.131-137
    • /
    • 2017
  • Maximum production of isoquercetin and quercetin simultaneously from rutin by subcritical water hydrolysis (SWH) was optimized using the response surface methodology. Hydrolysis parameters such as temperature, time, and $CO_2$ pressure were selected as independent variables, and isoquercetin and quercetin yields were selected as dependent variables. The regression models of the yield of isoquercetin and quercetin were valid due to the high F-value and low P-value. Furthermore, the high regression coefficient indicated that the polynomial model equation provides a good approximation of experimental results. In maximum production of isoquercetin from rutin, the hydrolysis temperature was the major factor, and the temperature or time can be lower if the $CO_2$ pressure was increased high enough, thereby preventing the degradation of isoquercetin into quercetin. The yield of quercetin was considerably influenced by temperature instead of time and $CO_2$ pressure. The optimal condition for maximum production of isoquercetin and quercetin simultaneously was temperature of $171.4^{\circ}C$, time of 10.0 min, and $CO_2$ pressure of 11.0 MPa, where the predicted maximum yields of isoquercetin and quercetin were 13.7% and 53.3%, respectively. Hydrolysis temperature, time, and $CO_2$ pressure for maximum production of isoquercetin were lower than those of quercetin. Thermal degradation products such as protocatechuic acid and 2,5-dihydroxyacetophenone were observed due to pyrolysis at high temperature. It was concluded that rutin can be easily converted into isoquercetin and quercetin by SWH under $CO_2$ pressure, and this result can be applied for SWH of rutin-rich foodstuffs.

Optimization of ultrasonic-assisted enzymatic hydrolysis conditions for the production of antioxidant hydrolysates from porcine liver by using response surface methodology

  • Yu, Hui-Chuan;Tan, Fa-Jui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1612-1619
    • /
    • 2017
  • Objective: The objective of this study was to optimize ultrasonic-assisted enzymatic hydrolysis conditions, including enzyme-to-substrate (E/S) ratio, pH, and temperature, for producing porcine liver hydrolysates (PLHs) with the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity by using response surface methodology (RSM). Methods: The study used RSM to determine the combination of hydrolysis parameters that maximized the antioxidant activity of our PLHs. Temperature ($40^{\circ}C$, $54^{\circ}C$, and $68^{\circ}C$), pH (8.5, 9.5, and 10.5), and E/S ratio (0.1%, 2.1%, and 4.1%) were selected as the independent variables and analyzed according to the preliminary experiment results, whereas DPPH free radical scavenging activity was selected as the dependent variable. Results: Analysis of variance showed that E/S ratio, pH, and temperature significantly affected the hydrolysis process (p<0.01). The optimal conditions for producing PLHs with the highest scavenging activity were as follows: E/S ratio, 1.4% (v/w); temperature, $55.5^{\circ}C$; and initial pH, 10.15. Under these conditions, the degree of hydrolysis, DPPH free radical scavenging activity, ferrous ion chelating ability, and reducing power of PLHs were 24.12%, 79%, 98.18%, and 0.601 absorbance unit, respectively. The molecular weight of most PLHs produced under these optimal conditions was less than 5,400 Da and contained 45.7% hydrophobic amino acids. Conclusion: Ultrasonic-assisted enzymatic hydrolysis can be applied to obtain favorable antioxidant hydrolysates from porcine liver with potential applications in food products for preventing lipid oxidation.

The Effect of Benzyl Alcohol on the Alkaline Hydrolysis of Poly(ethylene Terephthalat) Fibers (Poly(ethylene Terephthalate) 섬유의 알칼리 감량가공에 미치는 벤질 알코올의 영향)

  • 김애순;김공주
    • Textile Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.23-31
    • /
    • 1990
  • Alkaline hydrolysis of PET fibers and the change in structure thereby were investigated with weight loss, density, tensile strength, moisture regain and dyeing behaviors. Benzyl alcohol was used an accelerating agent for alkaline hydrolysis. As a result, it was shown that the weight loss of PET fiber pretreated with 5% benzyl alcohol was increased compared with that of the fiber treated only in sodium hydroxide solution. The rate constant of dissolution of alkaline hydrolysis was dependent on temperature and sodium hydroxide concentration. The loss of tensile strength was decreased with the decrease of weight loss. The hydroysis improved wicking and wetting of PET fibers. As the weight loss of PET fibers increased, the uptake of the dyes increased.

  • PDF

반응표면 분석법을 이용한 광학활성 styrene oxide의 생산조건 최적화

  • Lee, Eun-Yeol;Yun, Seong-Jun;Bae, Hyeon-Cheol;Gang, Jin-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • /
    • pp.593-596
    • /
    • 2000
  • Chiral epoxides are useful chiral synthons in organic synthesis and various biological methods have been investigated for the production of chiral epoxides. In this work, enantioselective resolution of racemic styrene oxide was investigated using an isolated Aspergillus niger sp. for the production of optically pure (S) -styrene oxide. The enantioselectivity and initial hydrolysis rates of racemic substrate were highly dependent on the pH, temperature, and the volume ratio of cosolvent. The experimental sets of pH, temperature, and the volume ratio of cosolvent were designed using central composite experimental design, and the reaction conditions were optimized using response surface analysis. The optimal conditions of pH, temperature, and the volume ration of cosolvent were determined to be 7.78, $28.32^{\circ}C$, and 2.4 %(v/v), respectively, and optically pure (S)-styrene oxide (> 99% ee) could be obtained with the 35 % yield by microbial enantioselective hydrolysis reaction.

  • PDF

Hydrolysis of Polylactic Acid Fiber by Lipase from Porcine pancreas

  • Lee, So-Hee;Song, Wba-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.6
    • /
    • pp.670-677
    • /
    • 2011
  • This study is to optimize the enzymatic processing conditions of Polylactic Acid (PLA) fiber using lipase from Porcine pancreas as an environmental technology. Hydrolytic activity dependent on pH, temperature, enzyme concentration, and treatment time, and structural change of PLA fiber were evaluated. The PLA fiber hydrolysis by lipase was maximized at 50% (o.w.f) lipase concentration $50^{\circ}C$ for 120 minutes under pH 8.5. There was a change of the protein absorbance in the treatment solution before and after the lipase treatment. In addition, there was no substantial change in the molecular and crystalline structures of PLA by lipase treatment as confirmed by DSC, XRD, and FT-IR.

Effect of sulfuric acid hydrolysis condition on yield, particle size and surface charge of cellulose nanocrystals (황산 가수분해 조건이 셀룰로오스 나노크리스탈의 수율, 입도 및 전기화학적 특성에 미치는 영향)

  • Ryu, Jae-Ho;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.67-75
    • /
    • 2011
  • Sulfuric acid hydrolysis is a typical approach for producing cellulose nanocrystals. The method has been widely used, but it has a disadvantage of low yield of cellulose nanocrystals compared to mechanical method. To expand the application of cellulose nanocrystals in practical, we should be able to produce them with higher yield and the controlled properties. In this study, therefore, we intended to investigate the effect of sulfuric acid hydrolysis condition on the characteristics of the prepared cellulose nanocrystals. The concentration of sulfuric acid, temperature and hydrolysis time were varied, and the yield as well as diverse properties including the morphology, size and zeta potential were examined. We could obtain cellulose nanocrystals up to 70% of yield and found that the properties were dependent on the reaction condition. It would be helpful to select an appropriate condition for producing cellulose nanocrystals.

Comparison of General Composition of Cooked Krill and Alcalase Optimization for Maximum Antioxidative Activity by Using Response Surface Methodology (자숙크릴의 일반성분 분석과 항산화 활성을 위한 반응표면법에 의한 알카라제 가수분해 최적화)

  • Kim, Kyoung-Myo;Cho, Yong-Bum;Hwang, Young-Jeong;Lee, Da-Sun;Lee, Yang-Bong
    • Culinary science and hospitality research
    • /
    • v.18 no.1
    • /
    • pp.15-26
    • /
    • 2012
  • The objective of this study is to optimize enzymatic hydrolysis of cooked krill by using Alcalase. To optimize krill hydrolysis on such dependent variables as TCA, DPPH-scavenging, and Fe-chelating activities by using Alcalase, independent variables of hydrolysis pH and temperature were investigated Their formulas and three dimensional graphs were obtained by using SAS and Maple softwares, respectively. For comparison of general composition of raw krill, its contents of moisture, crude protein, crude fat, and ash were 17.48%, 53.74%, 15.66%, and 10.21%, respectively, and for cooked krill, its contents were 4.80%, 71.84%, 5.26%, and 15.09%, respectively. The composition of fatty acids for cooked krill was similar to that of raw krill. The most abundant fatty acid was palmitic acid(16:0) and the following order was oleic acid(18:1), eicosapentaenoic acid (20:5), palmitoleic acid(16:1), and docosahexaenoic acid(22:6). For DH optimization of hydrolysates from cooked krill, its result was pH 8.5 and $66.6^{\circ}C$ hydrolysis temperature for the maximum DH of 29.4% For DPPH-antioxidative optimization of hydrolysates from raw krill, its maximum result of 27.1% was obtained in the hydrolysis condition of pH 7.4 and $67.5^{\circ}C$. For Fe-chelating optimization of hydrolysates from cooked krill, its maximum result of 24.9% was in the condition of pH 8.7 and $65.5^{\circ}C$. These results can be used for basic data for using krill products and other fish products as bioactive ingredients.

  • PDF

Optimization of Alcalase for Krill Byproduct Hydrolysis and Antioxidative Activities by Response Surface Methodology

  • Kim, Kyoung-Myo;Lee, Da-Sun;Nam, Min-Hee;Yoo, Hong-Seok;Kim, Seon-Bong;Chun, Byung-Soo;Lee, Yang-Bong
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.316-321
    • /
    • 2010
  • Krill byproduct was hydrolyzed with Alcalase 2.4L to produce functional ingredients for high antioxidative activities against 1,1-dimethyl-2-picryl-hydrazyl (DPPH) radical and Fe. The objective of this study was to investigate the optimum condition for degree of hydrolysis and antioxidative activity of enzymatic hydrolysate produced with the commercial Alcalase using response surface methodology (RSM) with a central composite rotatable design (CCRD). The ranges of independent variables were pH 7.6~10.4 for initial pH and $50.9{\sim}79.1^{\circ}C$ for hydrolysis temperature and their dependent variables were degree of hydrolysis, Brix, amount of phenolic compounds, DPPH-scavenging activity and Fe-chelating activity. RSM with CCRD was well designed to investigate the optimum condition for functional ingredients with high antioxidative activities using Alcalase 2.4L because of their high $R^2$ values of the range of 0.93~0.99 except the $R^2$ value of 0.50 for the amount of total phenolic compounds. The optimum hydrolysis conditions were pH 9.5 and $62^{\circ}C$ for degree of hydrolysis (DH) and pH 9.1 and $64^{\circ}C$ for DPPH-scavenging activity by response surface methodology. The yield of DH and DPPH-scavenging activity were $14.1{\pm}0.5%$ and $10.5{\pm}0.2%$, respectively. It is advantageous to determine the optimum hydrolysis conditions of krill and its by-products for the creation of different kinds of food products, as well as to increase the usage of marine protein sources.