• Title, Summary, Keyword: Temperature Fluctuations

Search Result 321, Processing Time 0.051 seconds

A Study on High Cycle Temperature Fluctuation Caused by Thermal Striping in a Mixing Tee Pipe (혼합배관 내의 열 경계층 이동으로 인한 고주기 온도요동에 관한 연구)

  • Kim, Seoug-B.;Park, Jong-H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.9-19
    • /
    • 2007
  • Fluid temperature fluctuations in a mixing tee pipe were numerically analyzed by LES model in order to clarify internal turbulent flows and to develope an evaluation method for high-cycle thermal fatigue. Hot and cold water with an temperature difference $40^{\circ}C$ were supplied to the mixing tee. Fluid temperature fluctuations in a mixing tee pipe is analysed by using the computational fluid dynamics code, FLUENT, Temperature fluctuations of the fluid and pipe wall measured as the velocity ratio of the flow in the branch pipe to that in the main pipe was varied from 0.05 to 5.0. The power spectrum method was used to evaluate the heat transfer coefficient. The fluid temperature characteristics were dependent on the velocity ratio, rather than the absolute value of the flow velocity. Large fluid temperature fluctuations were occurred near the mixing tee, and the fluctuation temperature frequency was random. The ratios of the measured heat transfer coefficient to that evaluated by Dittus-Boelter's empirical equation were independent of the velocity ratio, The multiplier ratios were about from 4 to 6.

Influence of Temperature and Relative Humidity in Infection of Nosema bombycis (Microsporidia: Nosematidae) and Cross-infection of N. mylitta on Growth and Development of Mulberry Silkworm, Bombyx mori

  • Chakrabarti, Satadal;Manna, Buddhadeb
    • International Journal of Industrial Entomology
    • /
    • v.17 no.2
    • /
    • pp.173-180
    • /
    • 2008
  • The influence of temperature and relative humidity in infection and cross-infection of Nosema bombycis and N. mylitta respectively in mulberry silkworm, Bombyx mori L. on larval mortality, multiplication of pathogens, larval weight and growth rate in three different seasons were studied. Seasons were selected in such condition, when very less fluctuations between minimum and maximum temperature and minimum and maximum relative humidity ($25{\sim}28^{\circ}C$ and $65{\sim}72%$ R.H) was observed i.e., season-1. Fluctuations between minimum and maximum temperature were less ($28.05{\sim}34.50^{\circ}C$) but R.H % was more ($55{\sim}81%$) in season-2. Fluctuations between minimum and maximum temperature and R.H % were more ($20.00{\sim}40.5^{\circ}C$ and $64.00{\sim}90.00%$) in season-3. Growth rate of microsporidian-infected silkworm is directly related to the prevailing temperature and relative humidity in silkworm. Silkworm can tolerate slight variation of temperature but slight variation of relative humidity disfavours the development of silkworm and favours the multiplication of pathogens.

Long-Term Fluctuations of Water Temperatures in the Upper 200m off the Southeast Coast of Korea (한국 동해안 외해 표층 200m 수온의 장기변동)

  • KANG Yong-Q;KANG Hye-Eun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.6
    • /
    • pp.450-458
    • /
    • 1991
  • The thermal structures and their spatio-temporal fluctuations in the upper 200m layer off the southeast coast of Korea are studied using the bimonthly temperature data for 17years(1967-1983) at 37 stations. We analyzed the fluctuations of the temperatures in the surface(0-100m) and in the subsurface(100-200m) layers. The fluctuations of temperatures in the surface water are dominated by the annual variation, whereas the subsurface layer temperatures contain considerable non-seasonal fluctuations. The distributions of water temperature anomalies in the subsurface layer are closely related with those in the surface layer. The predominant periods of temperature fluctuations in the subsurface layer, other than the annual variation, are 14 and 70 months. The period of 14 months coincides with that of the pole tide or Chandler wobble. The cluster analysis shows that our study area can be divided into the cold, the frontal and the warm regions.

  • PDF

Transport Properties of Ramp-Edge Junction with Columnar Defects (원통형 결함을 포함한 Ramp-Edge Junction의 수송특성)

  • Lee, C. W.;Kim, D. H.;Lee, T. W.;Sung, Gun-Yong;Kim, Sang-Hyeob
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.65-69
    • /
    • 2001
  • We measured the transport properties of$ YBa_2$$Cu_3$$O_{x}$ ramp-edge junction fabricated with interface-engineered barrier. The current-voltage characteristics show a typical resistively-shunted junction like behavior Voltage noise measurement revealed that the main source of the 1/f noise is the critical current and resistance fluctuations. The analysis of the noise data showed that the critical current fluctuations increase with temperature, whereas the resistance fluctuations are almost constant, and both fluctuations are almost correlated. The smaller magnitude of the critical current and resistance fluctuations seems to result from the columnar-deflects.s.

  • PDF

Temperature Coefficient of Reactioity (원자로의 반응도와 온도계수)

  • 노윤래
    • 전기의세계
    • /
    • v.15 no.5
    • /
    • pp.1-5
    • /
    • 1966
  • The stability and safety of operation of a reactor is determined mainly by the sign and magnitude of its reactivity responses to temperature changes. Reactors are subject to temperature fluctuations due to the changes in reactor power and ambient temperature. These temperature fluctuations cause reactivity disturbances through changes in the nuclear and physical properties of the core. Because of these important phenomena by the temperature effects, a large portion of study and testing on a reactor design has been conducted. In this experiment the overall temperature coefficient of the TRIGA MARK-II reactor is measured. The basic procedure is to change the tgemperature of the water moderator, and from the movements of a newly recalibrated control rod(this is necessary due to the effects of fuel burn-up and control rod depression) required to mintain criticality, the reactivity worth of the temperature change is determined. From this measurement, the overall temperature coefficient seems to be smoothly varying, almost a linear function of temperature, and a value of approximately -0.267${\c}$/$^{\circ}C$ can be obtained for an average temperature range from $17.6^{\circ}C$ to $32.5^{\circ}C$.

  • PDF

Properties of plasmas associated with fluctuations in the upstream of Earth's bow shock

  • Lee, En-Sang;Lin, Naiguo;Parks, George;Kim, Khan-Hyuk;Lee, Dong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.96.1-96.1
    • /
    • 2012
  • Various electromagnetic fluctuations are observed in the upstream of Earth's bow shock. Properties of plasmas are important in determining the development of the fluctuations. In this study we analyze the phase space distribution functions of plasmas measured by the Cluster spacecraft to understand how the fluctuations develop. Plasmas in the upstream of Earth's bow shock often consist of multiple components, especially when the fluctuations exist. In addition to the solar wind beams, backstreaming ion beams and diffuse ions are also often observed separately or simultaneously. The solar wind beams are not much perturbed even within the fluctuations. The diffuse ions are more than 10 times hotter than the solar wind beams and the backstreaming beams intermediate between them. The distribution functions of the diffuse and backstreaming ions are anisotropic to the magnetic field. Thus, they may be responsible for the fluctuations associated with temperature anisotropy. We will discuss about the thermalization processes and the relationship between the fluctuations and plasmas.

  • PDF

Compared of Temporal and Spatial Sea Water Quality in the Southern Coasts of Korea (남해안 시.공간적 수질환경 특성 비교)

  • Cho, Eun-Seob
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.141-151
    • /
    • 2009
  • Temperature, salinity, COD, DIN (Dissolved Inorganic Nitrogen), DIP (Dissolved Inorganic Phosphorus), and Chlorophyll ${\alpha}$ obtained from the southern coastal waters during the period of 2003 to 2005 were analyzed. Variability in temperature was not found between groups in southern coastal waters, but significantly different depending on sampling sites (p<0.05). The average temperature in 2003 estimated at $18.33^{\circ}C$ that was annually increased by 2005 and significantly different based on statistics (p<0.05). Unlikely to temperature, salinity was significantly different depending on sampling sites, as well as monthly variations (p<0.05). Likewise to temperature, the value of salinity was annually increased. COD estimated at the average of $>1.7\;mg\;l^{-1}$ for three years, indicating optimal water quality. The fluctuations of nutrients were extremely shown in different sampling sites and monthly variations. Chlorophyll a recorded above $2.0{\mu}g\;l^{-1}$ which was associated with high primary phytoplankton, whereas it showed much fluctuations in temporal and spatial, In particular, Tongyong, Jaranman, Jinjuman, and Samcheonpo located in the southeast were the highest fluctuations in water quality than any other regions. The correlation between salinity/COD and nutrients/chlorophyll a was strongly negative or positive, which was possibly associated with much the introduction of run-off water as well as rainfall in summer.

Insect Adaptations to Changing Environments - Temperature and Humidity

  • Singh, Tribhuwan;Bhat, Madan Mohan;Khan, Mohammad Ashraf
    • International Journal of Industrial Entomology
    • /
    • v.19 no.1
    • /
    • pp.155-164
    • /
    • 2009
  • The most important factors in environment that influence the physiology of insects are temperature and humidity. Insects display a remarkable range of adaptations to changing environments and maintain their internal temperature (thermoregulation) and water content within tolerable limits, despite wide fluctuations in their surroundings. Adaptation is a complex and dynamic state that widely differs in species. Surviving under changing environment in insects depends on dispersal, habitat selection, habitat modification, relationship with ice and water, resistance to cold, diapause and developmental rate, sensitivity to environmental signals and syntheses of variety of cryoprotectant molecules. The mulberry silkworm (Bombyx mori) is very delicate and sensitive to environmental fluctuations and unable to survive naturally because of their domestication since ancient times. Thus, the adaptability to environmental conditions in the silkworm is quite different from those of wild insects. Temperature, humidity, air circulation, gases and photoperiod etc. shows a significant interaction in their effect on the physiology of silkworm depending upon the combination of factors and developmental stage affecting growth, development, productivity and quality of silk. An attempt has been made in this article to briefly discuss adaptation in insects with special emphasis on the role of environmental factors and their fluctuations and its significance in the physiology of mulberry silkworm, B. mori.