• Title, Summary, Keyword: Takagi-Sugeno

Search Result 326, Processing Time 0.044 seconds

Design of T-S(Takagi-Sugeno) Fuzzy Control Systems Under the Bound on the Output Energy

  • Kim, Kwang-Tae;Joh, Joog-Seon;Kwon, Woo-Hyen
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.44-49
    • /
    • 1999
  • This paper presents a new T-S(Tae-Sugeno) fuzzy controller design method satisfying the output energy bound. Maximum output energy via a quadratic Lyapunov function to obtain the bound on output energy is derived. LMI(Linear Matrix Inequality) problems which satisfy an output energy bound for both of the continuous-time and discrete-time T-S fuzzy control system are also derived. Solving these LMIs simultaneously, we find a common symmetric positive definite matrix P which guarantees the global asymptotic stability of the system and stable feedback gains K's satisfying the output energy bound. A simple example demonstrates validity of the proposed design method.

  • PDF

Wide-Range Stabilization Control of Underactuated Robot using Fuzzy Controller (퍼지 제어기를 이용한 Underactuated Robot의 광범위 제어)

  • Yoo, Ki-Jeong;Yang, Dong-Hoon;Choi, Hyoun-Chul;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.2408-2410
    • /
    • 2001
  • This paper presents the control of an underactuated two-link robot called the Pendubot. Combining linearized state feedback control with Takagi-Sugeno(T-S) fuzzy controller wide-range stabilization of Pendulum is achieved. The local stabilization controler is designed by linearinzing the dynamic equations about the several desired set point and using LQR(Linear Quadratic Regulator) techniques. Takagi-Sugeno methodology is used to control the nonlinear models near different operation points. Fuzzy controller is obtained by the fuzzy blending of the local controllers. The paper includes a description of the algorithm as well as real time experimental results for the Pendubot.

  • PDF

Fuzzy Controller Design for Water level Control of Power Plant Drum (화력발전소 드럼의 수위제어를 위한 퍼지 제어기의 설계)

  • 이상혁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2003
  • In this paper, we propose a fuzzy controller design method for the water level control of the power plant drum in the form of nominimum phase system The proposed method is based on T. Takagi and H. Sugeno's fuzzy model. And we illustrate the improved characteristics as the simulation results, comparing with the conventional the PID and LQ controller design methods.

Fuzzy Modeling and Control of Wheeled Mobile Robot

  • Kang, Jin-Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • In this paper, a new model, which is a Takagi-Sugeno fuzzy model, for mobile robot is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and the outer loop is a PI controller designed for tracking the reference input, is suggested. Because the robot dynamics is nonlinear, it requires the controller to be insensitive to the nonlinear term. To achieve this objective, the model is developed by well known T-S fuzzy model. The design algorithm of inner state-feedback loop is regional pole-placement. In this paper, regions, for which poles of the inner state feedback loop are lie in, are formulated by LMI's. By solving these LMI's, we can obtain the state feedback gains for T-S fuzzy system. And this paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ(linear quadratic) cost. By using these properties, it is also shown in this paper that the PI controller can be obtained by solving the LQ problem.

Approximation Method for TS(Takagi-Sugeno) Fuzzy Model in V-type Scope Using Rational Bezier Curves (TS(Takagi-Sugeno) Fuzzy Model V-type구간 Rational Bezier Curves를 이용한 Approximation개선에 관한 연구)

  • 나홍렬;이홍규;홍정화;고한석
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.17-20
    • /
    • 2002
  • This paper proposes a new 75 fuzzy model approximation method which reduces error in nonlinear fuzzy model approximation over the V-type decision rules. Employing rational Bezier curves used in computer graphics to represent curves or surfaces, the proposed method approximates the decision rule by constructing a tractable linear equation in the highly non-linear fuzzy rule interval. This algorithm is applied to the self-adjusting air cushion for spinal cord injury patients to automatically distribute the patient's weight evenly and balanced to prevent decubitus. The simulation results indicate that the performance of the proposed method is bettor than that of the conventional TS Fuzzy model in terms of error and stability.

  • PDF

Fuzzy Controller Design for Steam Temperature Control of Power Plant Superheater (화력발전소 과열기의 증기온도 제어를 위한 퍼지 제어기 설계)

  • 이돈구;이상혁;김주식;유정용
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.80-86
    • /
    • 2002
  • In this paper, we present a method of fuzzy controller design for the power plant superheater in the form of bilinear system. For the steam temperature control, the input variables are constructed by the area of difference between the profiles estimated from bilinear observer and reference profiles, and the time rate of change. We estimate the control rules by T. Takagi and M. Sugeno's fuzzy model. The feasibilities of the suggested method are illustrated via the computer simulation results.

A Robust Indirect Adaptive Fuzzy State Feedback Regulator Based on Takagi-Sugeno Fuzzy Model

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Journal of Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.554-558
    • /
    • 2002
  • In this paper, we propose a robust indirect adaptive fuzzy state feedback regulator based on Takagi-Sugeno fuzzy model. The proposed adaptive fuzzy regulator is less sensitive to singularity than the conventional one based on the feedback linearization method. Furthermore, the proposed control method is applicable to not only plants with a perfect model but also plants with an imperfect model, which causes uncertainties. We verify the global stability of the proposed method by using Lyapunov method. In order to support the achievement, the application of the proposed adaptive fuzzy regulator to the control of a nonlinear system under the external disturbance is presented and the performance was verified by some simulation result.

Tracking Controller for Underwater Gliders Based on T-S Fuzzy Models (T-S 퍼지 모델 기반 수중글라이더를 위한 추종 제어기)

  • Lee, Gyeoung Hak;Kim, Do Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.261-269
    • /
    • 2018
  • In this paper, we propose a Takagi-Sugeno (T-S) fuzzy-model-based design for the tracking control of a class of nonlinear underwater glider. By using the partial linearization and the sector nonlinearity, the underwater glider with six degrees of freedom (6 DOF) is modelled by the T-S fuzzy model. The concerned tracking control problem with $H_{\infty}$ performance is converted into the stabilization one for the error dynamics between the given nonlinear underwater glider and the reference time-varying input. Sufficient conditions are derived for the asymptotic stabilizability of the error dynamics in the format of matrix inequality. Simulation results demonstrate the effectiveness of the proposed design methodology.

Design of Takagi-Sugeno Fuzzy Controllers for Nonlinear Systems using LMIs (선형행렬부등식을 이용한 비선형 시스템의 TS 퍼지 제어기 설계)

  • Kim, Jin-Sung;Choy, Ick;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.2398-2400
    • /
    • 2000
  • In this paper, we consider multi-objective synthesis of fuzzy controllers for a widely used special class of the Takagi-Sugeno(TS) fuzzy systems. We propose a new fuzzy controller utilizing the strategy of rescaling and show that synthesis of the proposed controllers satisfying multiple design objectives can be reduced to a simple linear matrix inequality(LMI) problem. Finally, an application to an inverted pendulum on a cart is presented to illustrate the validity of the proposed method.

  • PDF

An Indirect Model Reference Adaptive Fuzzy Control for SISO Takagi-Sugeno Model

  • Cho, Young-Wan;Park, Chang-Woo;Lee, Ki-Chul;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-42
    • /
    • 2001
  • In this paper, a parameter estimator is developed for the plant model whose structure is represented by the Takagi-Sugeno model. The essential idea behind the on-line estimation is the comparison of the measured stated with the state of an estimation model whose structure is the same as that of the parameterized model. Based on the parameter estimation scheme, and indirect Model Reference Adaptive Fuzzy control(MRAFC) scheme is proposed to provide asymptotic tracking of a reference signal for the systems with uncertain for slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop systems. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

  • PDF