• Title, Summary, Keyword: T-N

Search Result 10,335, Processing Time 0.072 seconds

AN ANALOGUE OF THE HILTON-MILNER THEOREM FOR WEAK COMPOSITIONS

  • Ku, Cheng Yeaw;Wong, Kok Bin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.1007-1025
    • /
    • 2015
  • Let $\mathbb{N}_0$ be the set of non-negative integers, and let P(n, l) denote the set of all weak compositions of n with l parts, i.e., $P(n,l)=\{(x_1,x_2,{\cdots},x_l){\in}\mathbb{N}^l_0\;:\;x_1+x_2+{\cdots}+x_l=n\}$. For any element $u=(u_1,u_2,{\cdots},u_l){\in}P(n,l)$, denote its ith-coordinate by u(i), i.e., $u(i)=u_i$. A family $A{\subseteq}P(n,l)$ is said to be t-intersecting if ${\mid}\{i:u(i)=v(i)\}{\mid}{\geq}t$ for all $u,v{\epsilon}A$. A family $A{\subseteq}P(n,l)$ is said to be trivially t-intersecting if there is a t-set T of $[l]=\{1,2,{\cdots},l\}$ and elements $y_s{\in}\mathbb{N}_0(s{\in}T)$ such that $A=\{u{\in}P(n,l):u(j)=yj\;for\;all\;j{\in}T\}$. We prove that given any positive integers l, t with $l{\geq}2t+3$, there exists a constant $n_0(l,t)$ depending only on l and t, such that for all $n{\geq}n_0(l,t)$, if $A{\subseteq}P(n,l)$ is non-trivially t-intersecting, then $${\mid}A{\mid}{\leq}(^{n+l-t-l}_{l-t-1})-(^{n-1}_{l-t-1})+t$$. Moreover, equality holds if and only if there is a t-set T of [l] such that $$A=\bigcup_{s{\in}[l]{\backslash}T}\;A_s{\cup}\{q_i:i{\in}T\}$$, where $$A_s=\{u{\in}P(n,l):u(j)=0\;for\;all\;j{\in}T\;and\;u(s)=0\}$$ and $$q_i{\in}P(n,l)\;with\;q_i(j)=0\;fo\;all\;j{\in}[l]{\backslash}\{i\}\;and\;q_i(i)=n$$.

CONVERGENCE THEOREMS OF THE ITERATIVE SEQUENCES FOR NONEXPANSIVE MAPPINGS

  • Kang, Jung-Im;Cho, Yeol-Je;Zhou, Hai-Yun
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.321-328
    • /
    • 2004
  • In this paper, we will prove the following: Let D be a nonempty of a normed linear space X and T : D -> X be a nonexpansive mapping. Let ${x_n}$ be a sequence in D and ${t_n}$, ${s_n}$ be real sequences such that (i) $0\;{\leq}\;t_n\;{\leq}\;t\;<\;1\;and\;{\sum_{n=1}}^{\infty}\;t_n\;=\;{\infty},\;(ii)\;(a)\;0\;{\leq}\;s_n\;{\leq}\;1,\;s_n\;->\;0\;as\;n\;->\;{\infty}\;and\;{\sum_{n=1}}^{\infty}\;t_ns_n\;<\;{\infty}\;or\;(b)\;s_n\;=\;s\;for\;all\;n\;{\geq}\;1\;and\;s\;{\in}\;[0,1),\;(iii)\;x_{n+1}\;=\;(1-t_n)x_n+t_nT(s_nTx_n+(1-s_n)x_n)\;for\;all\;n\;{\geq}\;1.$ Then, if the sequence {x_n} is bounded, then $lim_{n->\infty}\;$\mid$$\mid$x_n-Tx_n$\mid$$\mid$\;=\;0$. This result improves and complements a result of Deng [2]. Furthermore, we will show that certain conditions on D, X and T guarantee the weak and strong convergence of the Ishikawa iterative sequence to a fixed point of T.

STRONG CONVERGENCE OF COMPOSITE IMPLICIT ITERATIVE PROCESS FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS

  • Gu, Feng
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E. Let ${\{T_i\}}^N_{i=1}$ be N nonexpansive self-mappings of K with $F\;=\;{\cap}^N_{i=1}F(T_i)\;{\neq}\;{\theta}$ (here $F(T_i)$ denotes the set of fixed points of $T_i$). Suppose that one of the mappings in ${\{T_i\}}^N_{i=1}$ is semi-compact. Let $\{{\alpha}_n\}\;{\subset}\;[{\delta},\;1-{\delta}]$ for some ${\delta}\;{\in}\;(0,\;1)$ and $\{{\beta}_n\}\;{\subset}\;[\tau,\;1]$ for some ${\tau}\;{\in}\;(0,\;1]$. For arbitrary $x_0\;{\in}\;K$, let the sequence {$x_n$} be defined iteratively by $\{{x_n\;=\;{\alpha}_nx_{n-1}\;+\;(1-{\alpha}_n)T_ny_n,\;\;\;\;\;\;\;\;\; \atop {y_n\;=\;{\beta}nx_{n-1}\;+\;(1-{\beta}_n)T_nx_n},\;{\forall}_n{\geq}1,}$, where $T_n\;=\;T_{n(modN)}$. Then {$x_n$} convergence strongly to a common fixed point of the mappings family ${\{T_i\}}^N_{i=1}$. The result presented in this paper generalized and improve the corresponding results of Chidume and Shahzad [C. E. Chidume, N. Shahzad, Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear Anal. 62(2005), 1149-1156] even in the case of ${\beta}_n\;{\equiv}\;1$ or N=1 are also new.

  • PDF

On (H, μn) Summability of Fourier Series

  • CHANDRA, SATISH
    • Kyungpook Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.513-518
    • /
    • 2003
  • In this paper, we have proved a theorem on Hausdorff summability of Fourier series which generalizes various known results. We prove that if $${\int}_{o}^{t}\;{\mid}{\phi}(u){\mid}\;du=o(t)\;as\;t{\rightarrow}0\; and\;\lim_{n{\rightarrow}{\infty}}{\int}^{\eta}_{{\pi}/n}{\frac{{\mid}{\phi}(t)-{\phi}(t+{\pi}/n){\mid}}{t}}dt=o(n)$$ where 0 < ${\eta}$ < 1, then the Fourier series is (H, ${\mu}_n$) summable to s at t = x where the sequence ${\mu}_n$ is given by ${\mu}_n={\int}^1_0x^n{\chi}(x)\;dx\;n=0,1,2\;and\;K_n(t)=\limits\sum_{{\nu}=0}^n(\array {n\\{\nu}})({\Delta}^{{n}-{\nu}}{\mu}_{\nu}){\frac{sin{\nu}t}{t}}$.

  • PDF

Photodecomposition of N-t-Butyl-N-chloro-$\omega$-phenylalkanesulfonamides in the Presence of Oxygen

  • Lee, Jong Hun;Kim Kyongtae
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.676-680
    • /
    • 1992
  • Irradiation of N-t-butyl-N-chloro-3-phenylpropanesulfonamide (1a) in benzene at $20^{\circ}C$ using 450 W high pressure mercury arc lamp in the presence of oxygen affored N-t-butyl-3-phenylpropanesulfonamide (2), N-t-butyl-3-chloro-3-phenylpropanesulfonamide (3), and N-t-butyl-3-oxo-3-phenylpropanesulfonamide (4). Similarly, N-t-butyl-4- (5), N-t-butyl-4-chloro-4- (6), and N-t-butyl-4-phenylbutanesulfonamides (7) were obtained from N-t-butyl-N-chloro-4-phenylbutanesulfonamide (1b). However, irradiation of N-t-butyl-N-chloro-5-phenylpentanesulfonamide (1c) under the same conditions gave complex mixtures. These results indicate that sulfonamidyl radical generated from each of 1a and 1b can abstract intramolecularly a hydrogen atom from the benzylic position only by forming six and seven-membered transition states, respectively.

  • PDF

THE COMPUTATION METHOD OF THE MILNOR NUMBER OF HYPERSURFACE SINGULARITIES DEFINED BY AN IRREDUCIBLE WEIERSTRASS POLYNOMIAL $z^n$+a(x,y)z+b(x,y)=0 in $C^3$ AND ITS APPLICATION

  • Kang, Chung-Hyuk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.169-173
    • /
    • 1989
  • Let V={(x,y,z):f=z$^{n}$ -npz+(n-1)q=0 for n .geq. 3} be a compled analytic subvariety of a polydisc in $C^{3}$ where p=p(x,y) and q=q(x,y) are holomorphic near (x,y)=(0,0) and f is an irreducible Weierstrass polynomial in z of multiplicity n. Suppose that V has an isolated singular point at the origin. Recall that the z-discriminant of f is D(f)=c(p$^{n}$ -q$^{n-1}$) for some number c. Suppose that D(f) is square-free. then we prove that by Theorem 2.1 .mu.(p$^{n}$ -q$^{n-1}$)=.mu.(f)-(n-1)+n(n-2)I(p,q)+1 where .mu.(f), .mu. p$^{n}$ -q$^{n-1}$are the corresponding Milnor numbers of f, p$^{n}$ -q$^{n-1}$, respectively and I(p,q) is the intersection number of p and q at the origin. By one of applications suppose that W$_{t}$ ={(x,y,z):g$_{t}$ =z$^{n}$ -np$_{t}$ $^{n-1}$z+(n-1)q$_{t}$ $^{n-1}$=0} is a smooth family of complex analytic varieties near t=0 each of which has an isolated singularity at the origin, satisfying that the z-discriminant of g$_{t}$ , that is, D(g$_{t}$ ) is square-free. If .mu.(g$_{t}$ ) are constant near t=0, then we prove that the family of plane curves, D(g$_{t}$ ) are equisingular and also D(f$_{t}$ ) are equisingular near t=0 where f$_{t}$ =z$^{n}$ -np$_{t}$ z+(n-1)q$_{t}$ =0.}$ =0.

  • PDF

Upper and Lower Bounds of the Expected Busy Period for the Triadic Med(N, T, D) Policy (삼변수 Med(N, T, D) 운용방침에 따른 Busy Period 기대값의 상한과 하한 유도)

  • Rhee, Hahn-Kyou
    • Journal of the Society of Korea Industrial and Systems Engineering
    • /
    • v.36 no.1
    • /
    • pp.58-63
    • /
    • 2013
  • Using the known result of the expected busy period for the triadic Med (N, T, D) operating policies applied to a controllable M/G/1 queueing model, its upper and lower bounds are derived to approximate its corresponding actual values. Both bounds are represented in terms of the expected busy periods for the dyadic Min (N, T), Min (N, D) and Min (T, D) or Max (N, T), Max (N, D) and Max (T, D) with the simple N, T and D operating policies without using any other types of triadic operating policies such as Min (N, T, D) and Max (N, T, D) policies. All three input variables N, T and D are equally contributed to construct such bounds for estimation of the expected busy period.

Preoperative Staging in Non-Small Cell Lung Cancer without Lymphadenopathy on Computed Tomogram (흉부 전산화 단층촬영상 임파절종대가 없는 비소세포암 환자에 있어서 술전 병기판정)

  • Cha, Seung-Ick;Kim, Chang-Ho;Park, Jae-Yong;Jung, Tae-Hoon;Chang, Bong-Hyun;Kang, Duk-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.6
    • /
    • pp.616-623
    • /
    • 1994
  • Objectives: Careful evaluation about mediastinal involvement is important in the management of patients with non-small cell lung cancer. Invasive staging procedure such as mediastinoscopy is advocated because of the unreliability of noninvasive staging methods such as CT, MRI. We compared differences between pre- and postoperative staging in non-small cell lung cancer without lymphadenopathy on CT scan and investigated the methods for more accurate preoperative staging. Methods & Results: 1) Records of a total of 41 patients with preoperative $T_{1-3}N_0M_0$ non-small cell lung cancer were reviewed and the histologic types of tumors were squamous cell carcinoma in 32 cases, adenocarcinoma in 6 cases and large cell carcinoma in 3 cases. Twenty-four cases were central lesions and seventeen cases were peripheral lesions. 2) Among the 32 cases with preoperative $T_2$, 2 cases were identified postoperatively as $T_3$ with invasion of chest wall and among 6 cases with preoperative $T_3$, 1 case was identified postoperatively as $T_4$ with invasion of aorta and pulmonary arteries. 3) After the operation of 35 cases with $T_{1-2}$, 5 cases were $N_1$ and 3 cases were $N_2$ postoperatively. After the operation of 6 cases with $T_3$, 2 cases were $N_1$ and 3 cases were $N_2$ postoperatively. Preoperative $T_3$ showed more intrathoracic lymph node metastases and higher $N_2/N_1$ involvement ratio than preoperative $T_{1-2}$. 4) Complete surgical resections were done in 34 out of 41 cases. Incomplete resection were done in all postoperative $N_2$ tumors. Conclusion: Invasive staging procedures such as mediastinoscopy should be considered in the case of preoperative $T_3$ non-small cell lung cancer even though mediastinal lymphadenopathy is not recognized on the CT scan of the chest.

  • PDF

Dynamic Compressed Representation of Texts with Rank/Select

  • Lee, Sun-Ho;Park, Kun-Soo
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.1
    • /
    • pp.15-26
    • /
    • 2009
  • Given an n-length text T over a $\sigma$-size alphabet, we present a compressed representation of T which supports retrieving queries of rank/select/access and updating queries of insert/delete. For a measure of compression, we use the empirical entropy H(T), which defines a lower bound nH(T) bits for any algorithm to compress T of n log $\sigma$ bits. Our representation takes this entropy bound of T, i.e., nH(T) $\leq$ n log $\sigma$ bits, and an additional bits less than the text size, i.e., o(n log $\sigma$) + O(n) bits. In compressed space of nH(T) + o(n log $\sigma$) + O(n) bits, our representation supports O(log n) time queries for a log n-size alphabet and its extension provides O(($1+\frac{{\log}\;{\sigma}}{{\log}\;{\log}\;n}$) log n) time queries for a $\sigma$-size alphabet.

Euler-Maruyama Numerical solution of some stochastic functional differential equations

  • Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.13-30
    • /
    • 2007
  • In this paper we study the numerical solutions of the stochastic functional differential equations of the following form $$du(x,\;t)\;=\;f(x,\;t,\;u_t)dt\;+\;g(x,\;t,\;u_t)dB(t),\;t\;>\;0$$ with initial data $u(x,\;0)\;=\;u_0(x)\;=\;{\xi}\;{\in}\;L^p_{F_0}\;([-{\tau},0];\;R^n)$. Here $x\;{\in}\;R^n$, ($R^n$ is the ${\nu}\;-\;dimenional$ Euclidean space), $f\;:\;C([-{\tau},\;0];\;R^n)\;{\times}\;R^{{\nu}+1}\;{\rightarrow}\;R^n,\;g\;:\;C([-{\tau},\;0];\;R^n)\;{\times}\;R^{{\nu}+1}\;{\rightarrow}\;R^{n{\times}m},\;u(x,\;t)\;{\in}\;R^n$ for each $t,\;u_t\;=\;u(x,\;t\;+\;{\theta})\;:\;-{\tau}\;{\leq}\;{\theta}\;{\leq}\;0\;{\in}\;C([-{\tau},\;0];\;R^n)$, and B(t) is an m-dimensional Brownian motion.

  • PDF