• Title, Summary, Keyword: Syngas

Search Result 371, Processing Time 0.027 seconds

Removal of CO2 in Syngas using Li2ZrO3 (Li2ZrO3를 이용한 합성가스내의 CO2 제거)

  • Park, Joo-Won;Kang, Dong-Hwan;Yoo, Kyung-Seun;Lee, Jae-Goo;Kim, Jae-Ho;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.250-254
    • /
    • 2006
  • Reaction of $CO_2$ with $Li_{2}ZrO_{3}$ has been investigated in a TGA and the effects of $H_{2}$ and CO on the removal of $CO_{2}$ using $Li_{2}ZrO_{3}$ were evaluated in a packed bed reactor. The initial rate of $CO_{2}$ removal reaction of $Li_{2}ZrO_{3}$ increased with the increase of gas flow rate up to 100 mL/min and then was maintained, which implied the disappearance of the gas film resistance. The reaction of $CO_{2}$ with $Li_{2}ZrO_{3}$ took place as the first order and the range of optimum temperature was found to be about $500{\sim}600^{\circ}C$. XRD and SEM analysis showed the formation of crystalline $Li_{2}ZrO_{3}$ and porous $Li_{2}ZrO_{3}$/$ZrO_{2}$. The presence of $H_{2}$ did not affect the adsorption of $CO_2$ with $Li_2ZrO_3$. On the other hand, CO inhibited the sorption of $CO_{2}$ into $Li_{2}CO_{3}$(L) on $Li_{2}ZrO_{3}$.

Modeling of Liquid Hold-up in Fixed-bed Reactor for Fischer-Tropsch Synthesis (고정층 Fischer-Tropsch 반응기의 액상 왁스 정체 현상 모델링)

  • Park, Chansaem;Jung, Ikhwan;Park, Seongho;Na, Jonggeol;Kshetrimayum, Krishnadash;Han, Chonghun;Lee, Jong Yeol;Jung, Jongtae
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.63-67
    • /
    • 2014
  • Fischer-Tropsch synthesis mainly produces a wax which is a viscous liquid for long carbon chain. When a catalytic fixed-bed reactor is used for Fischer-Tropsch synthesis, the wax generated on a catalyst surface can keep adsorbing on the catalyst surface. This liquid hold-up causes significant pressure drop and clogging problems through the reactor. Thus, the model for liquid hold-up is required to design the size of reactor and catalyst particles. In this study, the liquid hold-up model considering structural and operational conditions was proposed based on empirical equations for convective mass transfer between the syngas flow and the wax-adsorbed catalyst. The developed model was validated by comparing with the experimental data from Knochen's work (2010). The influence of reactor length and coross section on the wax hold-up in reactor were analyzed and the optimal reactor size were proposed.

Effect of Forming Process and Particle Size on Properties of Porous Silicon Carbide Ceramic Candle Filters (성형공정(成形工程)과 원료입도(原料粒度)가 다공성(多孔性) 탄화규소(炭火硅素) 세라믹 캔들 필터 특성(特性)에 미치는 영향(影響))

  • Han, In-Sub;Seo, Doo-Won;Hong, Ki-Seog;Woo, Sang-Kuk
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.31-43
    • /
    • 2010
  • To fabricate porous SiC candle filter for filtration facility of the IGCC system, the candle type filter preforms were fabricated by ramming and vacuum extrusion process. A commercially available ${\alpha}$-SiC powders with various particle size were used as starting raw materials, and $44\;{\mu}m$ mullite, $CaCO_3$ powder were used as non-clay based inorganic sintering additive. The candle typed preforms by ramming process and vacuum extrusion were sintered at $1400^{\circ}C$ for 2h in air atmosphere. The effect of forming method and particle size of filter matrix on porosity, density, strength (flexural and compressive strength) and microstructure of the sintered porous SiC candle tilters were investigated. The sintered porous SiC filters which were fabricated by ramming process have more higher density and strength than extruded filter in same particle size of the matrix, and its maximum density and 3-point bending strength were $2.00\;g/cm^3$ and 45 MPa, respectively. Also, corrosion test of the sintered candle filter specimens by different forming method was performed at $600^{\circ}C$ for 2400h using IGCC syngas atmosphere for estimation of long-term reliability of the candle filter matrix.

Low Grade Coal-CO2 Catalytic Gasification Reaction for CO gas Synthesis (CO 합성을 위한 저급석탄-CO2 촉매 가스화 반응)

  • Lee, Ho Yong;Lee, Jong Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.466-473
    • /
    • 2016
  • In this study, the experiments on optimal CO gas synthesis were conducted using low grade coal-$CO_2$ catalyst gasification reaction. The characteristics of generated CO gas were investigated using the chemical activation method of KOH, $K_2CO_3$, $Na_2CO_3$ catalysts with Kideco and Shewha coal. The preparation process has been optimized through the analysis of experimental variables such as ratio between activating chemical agents and coal, the flow rate of gas and reaction temperature during $CO_2$ conversion reaction. The produced CO gas was analysed by Gas Chromatography (GC). The 98.6% $CO_2$ conversion for Kideco coal mixed with 20 wt% $Na_2CO_3$ and 98.9% $CO_2$ conversion for Shenhua coal mixed with 20 wt% KOH were obtained at the conditions of $T=950^{\circ}C$ and $CO_2$ flow rate of 100 cc/min. Also, the low grade coal-$CO_2$ catalytic gasification reaction showed the CO selectivities(97.8 and 98.8 %) at the same feed ratio and reaction conditions.

Potential of Coal Gasification Slag as an Alkali-activated Cement (석탄가스화 복합발전 슬래그의 알칼리 활성 시멘트로서의 가능성)

  • Kim, Byoungkwan;Lee, Sujeong;Chon, Chul-Min;Choi, Hong-Shik
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.38-47
    • /
    • 2018
  • Integrated gasification combined cycle (IGCC) is a next generation energy production technology that converts coal into syngas with enhanced power generation efficiency and environmental performance. IGCC produces almost coal gasification slag as the solid by-product. IGCC slag is generated about 140,000 tons for a year although recycling of it is still in the early stages. We evaluated the potential of IGCC slag which is generated from a pilot plant in South Korea as an alkali-activated cement. Samples which were activated with the combined activator of sodium silicate solution and caustic soda had an average compressive strength of 4.5 MPa, showing expansion. Expansion of the alkali-activated slag was presumed to be caused by free CaO in the slag, although it was not detected by the ethylene glycol method. Samples that were activated with the combined activator of sodium aluminate and caustic soda had an average compressive strength of 10 MPa. Hydroxy sodalite and $C_3AH_6$ were found to be the new crystalline phases. IGCC slag can be used as an alkali-activated material, but the strength performance should be improved with proper mix design approach to calculate optimum proportions which can alleviate the expansion issue at the same time.

Catalytic Performance for the Production of CH4-rich Synthetic Natural Gas (SNG) on the Commercial Catalyst; Influence of Operating Conditions (고농도 메탄의 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 운전조건에 대한 영향)

  • Kim, Jin-Ho;Ryu, Jae-Hong;Kang, Suk-Hwan;Yoo, Young-Don;Kim, Jun-Woo;Go, Dong-Jun;Jung, Moon;Lee, Jong-Min
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • In this work, we performed the methanation reaction using synthesis gas ($H_2/CO_2$) for the process to produce synthetic natural gas (SNG) for $4^{th}$ methanation reactor in SNG process proposed by RIST-IAE. Experimental conditions were changed with temperature, pressure and space velocity. At this time, $CO_2$ conversion, $CH_4$ selectivity and $H_2$ concentration after reaction were investigated. As a result, $CH_4$ selectivity by the $CO_2$ methanation increased with lower space velocity and higher pressure. On the other hand, in the case of temperature, the maximum value was shown at $320^{\circ}C$. From these results, it was found that the optimum condition of the fourth reactor suitable for the SNG process was obtained.

Intensified Low-Temperature Fischer-Tropsch Synthesis Using Microchannel Reactor Block : A Computational Fluid Dynamics Simulation Study (마이크로채널 반응기를 이용한 강화된 저온 피셔-트롭쉬 합성반응의 전산유체역학적 해석)

  • Kshetrimatum, Krishnadash S.;Na, Jonggeol;Park, Seongho;Jung, Ikhwan;Lee, Yongkyu;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.92-102
    • /
    • 2017
  • Fischer-Tropsch synthesis reaction converts syngas (mixture of CO and H2) to valuable hydrocarbon products. Simulation of low temperature Fischer -Tropsch Synthesis reaction and heat transfer at intensified process condition using catalyst filled single and multichannel microchannel reactor is considered. Single channel model simulation indicated potential for process intensification (higher GHSV of $30000hr^{-1}$ in presence of theoretical Cobalt based super-active catalyst) while still achieving CO conversion greater than ~65% and $C_{5+}$ selectivity greater than ~74%. Conjugate heat transfer simulation with multichannel reactor block models considering three different combinations of reactor configuration and coolant type predicted ${\Delta}T_{max}$ equal to 23 K for cross-flow configuration with wall boiling coolant, 15 K for co-current flow configuration with subcooled coolant, and 13 K for co-current flow configuration with wall boiling coolant. In the range of temperature maintained (498 - 521 K), chain growth probability calculated is desirable for low-temperature Fisher-Tropsch Synthesis.

Perovskite-type LaFe1-xMnxO3 (x=0, 0.3, 0.5, 0.7, 1.0) oxygen carriers for chemical-looping steam methane reforming: Oxidation activity and resistance to carbon formation

  • Zhao, Kun;He, Fang;Huang, Zhen;Wei, Guoqiang;Zheng, Anqing;Li, Haibin;Zhao, Zengli
    • Korean Journal of Chemical Engineering
    • /
    • v.34 no.6
    • /
    • pp.1651-1660
    • /
    • 2017
  • The effects of Mn substitution of $LaMn_xFe_{1-x}O_3$ (x=0, 0.3, 0.5, 0.7, 1.0) on the oxidation activity and resistance to carbon formation for chemical-looping steam methane reforming (CL-SMR) were investigated. The desired crystalline perovskite phases were formed by transferring from the orthorhombic structure of $LaFeO_3$ to rhombohedral lattice of $LaMnO_3$ as the degree of Mn-doping increased. Manganese ions have a mixed state of $Mn^{3+}$ and $Mn^{4+}$ in the $LaFe_{1-x}Mn_xO_3$, meanwhile inducing the states of highly mixed character of $Fe^{2+}$, $Fe^{3+}$ and $Fe^{4+}$ in iron ions. Substitution of Mn for Fe with proper value not only increases the lattice oxygen, which is conducive to the partial oxidation of $CH_4$ to produce syngas, but also enhances the lattice oxygen mobility from the bulk to the surface of the oxygen carrier particles. Judging from the points of the redox reactivity, resistance to carbon formation and hydrogen generation capacity, the optimal range of the degree of Mn substitution is x=0.3-0.5.

Production of Solar Fuel by Plasma Oxidation Destruction-Carbon Material Gasification Conversion (플라즈마 산화분해-탄화물 가스화 전환에 의한 태양연료 생산)

  • Song, Hee Gaen;Chun, Young Nam
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • The use of fossil fuel and biogas production causes air pollution and climate change problems. Research endeavors continue to focus on converting methane and carbon dioxide, which are the major causes of climate change, into quality energy sources. In this study, a novel plasma-carbon converter was proposed to convert biogas into high quality gas, which is linked to photovoltaic and wind power and which poses a problem on generating electric power continuously. The characteristics of conversion and gas production were investigated to find a possibility for biogas conversion, involving parametric tests according to the change in the main influence variables, such as O2/C ratio, total gas feed rate, and CO2/CH4 ratio. A higher O2/C ratio gave higher conversions of methane and carbon dioxide. Total gas feed rate showed maximum conversion at a certain specified value. When CO2/CH4 feed ratio was decreased, both conversions increased. As a result, the production of solar fuel by plasma oxidation destruction-carbon material gasification conversion, which was newly suggested in this study, could be known as a possibly useful technology. When O2/C ratio was 0.8 and CO2/CH4 was 0.67 while the total gas supply was at 40 L min-1 (VHSV = 1.37), the maximum conversions of carbon dioxide and methane were achieved. The results gave the highest production for hydrogen and carbon dioxide which were high-quality fuel.

A Study on Fuel Quality Characteristics of F-T Diesel for Production of BTL Diesel (BTL 디젤 생산을 위한 F-T 디젤의 연료적 특성 연구)

  • Kim, Jae-Kon;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub;Lee, Sang-Bong;Lee, Yun-Je;Kang, Myung-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.450-458
    • /
    • 2012
  • In order to reduce the effects of greenhouse gas (GHG) emissions, the South Korean government has announced a special platform of technologies as part of an effort to minimize global climate change. To further this effort, the Korean government has pledged to increase low-carbon and carbon neutral resources for biofuel derived from biomass to replace fossil and to decrease levels of carbon dioxide. In general, second generation biofuel produced form woody biomass is expected to be an effective avenue for reducing fossil fuel consumption and greenhouse gas (GHG) emissions in road transport. It is important that under the new Korean initiative, pilot scale studies evolve practices to produce biomass-to-liquid (BTL) fuel. This study reports the quality characteristics of F-T(Fischer-Tropsch) diesel for production of BTL fuel. Synthetic F-Tdiesel fuel can be used in automotive diesel engines, pure or blended with automotive diesel, due to its similar physical properties to diesel. F-T diesel fuel was synthesized by Fischer-Tropsch (F-T) process with syngas($H_2$/CO), Fe basedcatalyst in low temperature condition($240^{\circ}C$). Synthetic F-T diesel with diesel compositions after distillation process is consisted of $C_{12}{\sim}C_{23+}$ mixture as a kerosine, diesel compositions of n-paraffin and iso-paraffin compounds. Synthetic F-T diesel investigated a very high cetane number, low aromatic composition and sulfur free level compared to automotive diesel. Synthetic F-T diesel also show The wear scar of synthetic F-T diesel show poor lubricity due to low content of sulfur and aromatic compounds compared to automotive diesel.