• Title, Summary, Keyword: Swine slurry

Search Result 99, Processing Time 0.07 seconds

Influence of Continuous Application of Low-concentration Swine Slurry on Soil Properties and Yield of Tomato and Cucumber in a Greenhouse (시설하우스에서 저농도 돈분 액비의 연용이 토양 및 토마토와 오이의 수량에 미치는 영향)

  • Seo, Young-Ho;Ahn, Moon-Sub;Kang, An-Seok;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.773-778
    • /
    • 2011
  • Long-term continuous application of livestock by-products to agricultural land may adversely affect the soil characteristics and the crop yield. Five year term study from 2007 was carried out to assess the effects of repeated application of low-concentration swine slurry on soil chemical properties including phosphate and heavy metal contents and yield of tomato (Lycopersicon esculentum) and cucumber (Cucumis sativus L.) in a greenhouse. Treatments were conventional chemical fertilizers and three application rates of low-concentration swine slurry (Slurry composting and biofiltration, SCB): 50%, 100%, and 200% of recommended nitrogen fertilization. For swine slurry treatment of 50% nitrogen, deficient nitrogen was supplemented with urea fertilizer. The soil phosphorus and heavy metal contents after five year continuous application of swine slurry were not significantly higher than those of chemical fertilizer use. Repeated application of the swine slurry alone for five years resulted in relatively high soil exchangeable potassium and sodium compared with chemical fertilizer treatment. Contents of heavy metals in leaves of tomato and cucumber did not show significant difference among treatments. Yields of the crops for the swine slurry were not significantly different from that of chemical fertilizer. The results imply that continuous application of the swine slurry may not influence levels of soil phosphate and trace elements in greenhouse soils but could accumulate potassium and sodium in the soil.

A Study on the Solid-Liquid Separation Characteristics for Highly Concentrated Swine Wastewater Using Model Decanter (모델 데칸트를 이용한 고농도 슬러리상태 양돈폐수의 고액분리특성에 관한 연구)

  • Na, Eun-Su;Gang, Ho
    • 연구논문집
    • /
    • /
    • pp.67-77
    • /
    • 2000
  • This study was performed to investigate the characteristics and performance of model Decanter for separating swine wastewater to solid and liquid which is slurry state with 12.6% TS. Swine wastewater of the slurry tank was pumped into model Decanter which capacity was $2m^3$/hr in 10% TS Slurry inside of bowl was separated to solid-liquid by centrifugal acceleration. Sampling was done in the section of slurry feed pipe, supernatant outflow pipe, cake discharge pipe. After solid-liquid separation TS, $COD_cr$ and slurry volume reduction effect represented 38%, 40%, 19.6% respectively. Relation factor of model Decanter operation slurry concentration, optimum retention time of slurry, overflow velocity of supernatant, supernatant concentration, sludge removal rate etc. Optimal operation conditions can be set and evaluated efficiency based on the experimental results in the case of Decanter adopted for solid-liquid separation in highly concentrated swine wastewater.

  • PDF

Leaching of lonic Components from the Soil Applied with Swine Slurry (돈분뇨의 토양처리시 이온 성분의 용탈 특성)

  • 김태헌;류성필;김성수;오윤근;허철구
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.325-335
    • /
    • 2003
  • An agricultural land application of swine slurry is one of the best management practices in Jeju island whose ground water must be protected. So as to study the effect of appling swine slurry on ground water or aquifer, incubation-leaching technique was used by assuming the incubating period of 1, 2, 4, 8, 16, or 32 days, and application rate of 3200.0 mgT-N/$\ell$ , 820.0 mgT-P/$\ell$, and 1887.0 mgK$\^$+/$\ell$ in swine slurry. The leachates were collected from the soil columns(PVC 30 cm L${\times}$5.5 cm D) packed 15cm in depth with Gangjeong soil series by washing with 100 mL distilled water. The leached components were measured by using ion chromatography far Cl$\^$-/, NO$_3$-N, F$\^$-/, Br$\^$-/, Na$\^$+/, K$\^$+/, Ca$^2$$\^$+/, and Mg$^2$$\^$+/ , atomic absorption spectrophotometry for Fe and Mn, and UV-Vis spectrophotometry for T-N and T-p. Application of swine slurry in naked soil could influence on the ground water or aquifer by increasing nitrate-nitrogen in leachate with time, or leaching the cations present in soils in accompany with anions because of H$\^$+/produced in nitrification. Therefore, careful consideration should be taken about what amount, when, where, and how fur protecting ground water system.

Comparison of Analysis Methods for Ammonia from Swine Production Facilities

  • Kim, Ki Y.;Choi, Hong L.;Kim, Chi N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1608-1614
    • /
    • 2004
  • This study was performed to evaluate the accuracy, validation and applicability of UV spectrophotometer (UV), Ion Chromatography (IC), and Detector tube (DT) methods for measuring ammonia (NH3) concentration in a swine confinement house and swine slurry storage tank. The mean values of $NH_{3}$ emitted from the house and slurry were 5.333 ppm and 42.192 ppm for the IC method; 4.13 ppm and 36.29 ppm for the Detector tube; and 5.417 ppm and 34.193 ppm for the UV method. The accuracy and the correlation of an ammonia level analyzed by the IC method compared to the UV method were 98% and 0.998($R^{2}$) in the swine confinement house and 94% and 0.997($R^{2}$) in the swine slurry storage tank. On the other hand, those of ammonia level measured by the Detector tube compared to the UV method were 77% and 0.957($R^{2}$) in the swine confinement house and 82% and 0.941($R^{2}$) in the swine slurry storage tank. This indicated that the accuracy and the correlation of the IC method compared to the UV method were higher than those of the Detector tube method compared to the UV method. Therefore, it was concluded that the IC method was more accurate in measuring ammonia concentration in a swine house and a swine slurry storage tank. The Detector tube method should not be applied to the swine slurry storage tank in which ammonia concentration is generally higher than 30 ppm because low accuracy is caused by a gross space between scales inscribed in the Detector tube.

Aeration Effect on Degradation of Veterinary Antibiotics in Swine Slurry

  • Seo, Youngho;Lim, Soojeong;Choi, Seungchul;Heo, Sujeong;Yoon, Byeongsung;Park, Younghak;Hong, Daeki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • A portion of the veterinary antibiotics administrated to livestock are generally excreted via feces and urine. Tetracyclines and tylosin have a greater priority of environmental risk in Korea based on the consumption and the potential to reach soil and water environment. The antibiotics in animal byproducts need to be reduced or eliminated before they are applied to agricultural lands through composting or other agricultural practices. The objective of the study was to investigate the effect of aeration on degradation of antibiotics during storage of swine slurry. Two antibiotics, tetracycline (TC) and tylosin (TYL), were detected from the swine slurry used in the study. One hour aeration per day for 62 days reduced TC concentration from 199 to $43ng\;L^{-1}$ compared with $104ng\;L^{-1}$ without aeration. Aeration for three and six hours decreased TC level to 30 and $23ng\;L^{-1}$, respectively. The dissipation of TC was fitted with a first-order kinetic model. Aeration for 1, 3, and 6 hours every day increased the first-order rate constant, k, from $0.011day^{-1}$ under anaerobic condition to 0.022, 0.026, and $0.037day^{-1}$, respectively. For TYL, aeration during storage of swine slurry enhanced k from $0.0074day^{-1}$ to 0.014, 0.018, and $0.031day^{-1}$ for 1, 3, and 6 hours per day, respectively. For liquid swine slurry, biotic processes can be more effective for dissipation of antibiotics than abiotic processes because of low organic matter and high water content. These results suggest that aeration can increase the degradation rate of antibiotics during storage of swine slurry.

Study on Ammonia Emission Characteristic of Pig Slurry (양돈 슬러리의 암모니아 발생 특성에 관한 연구)

  • Lee S.H.;Yun N.K.;Lee K.W.;Lee I.B.;Kim T.I.;Chang J.T.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • Ammonia emission from swine production process originates from three major sources: manure storage facility, swine housing, and land application of manure. Most of the ammonia gas that are emitted from swine production operations is the by-product of aerobic or anaerobic decomposition of swine waste by microorganism. Knowing the ammonia emission rate is necessary to understand how management practices or alternative manure handling process could reduce impacts of this emission on the environment and neighbors. Ammonia gas emission from pig slurry is very difficult to predict because it is affected by many factors including wind speed of slurry surface, temperature or pH of the swine slurry, sort breed differences and classes, and diets. This study was carried out to effects of pH and temperature on ammonia gas emission from growing-finishing pig slurry. Treated far slurry in this study were pH and temperature. Results showed that pH of slurry variable changes 5, 6, 7, 8 upon an addition of NaOH and $HNO_3$, respectively. The temperature of the slurry which was contained in a water bath maintained at increasing levels ranging from 10 to $35^{\circ}C$. Ammonia emission rate of influenced pH and temperature such that the increase in pH or temperature resulted to an increase in ammonia emission. The ammonia gas was not detected at pH 5 and 6. Moreover, at a slurry of pH 8, the ammonia ranged from 28 to 60ppm and 8-29 ppm at slurry pH of 7 while temperature was 13 to $33^{\circ}C$. When slurry pH was>6, the ammonia emission was significantly increased according to rise in temperature in contrast to acid treatment of the pH. There was also a significantly increase in ammonia emission relative to slurry pH of 7 to 8. The above findings showed that to effectively reduce ammonia emission from slurry of growing-finishing pigs, the pH and temperature should be maintained a low levels.

  • PDF

Studoes on the Slurry-Application of Winter Rye (Secale cereale L. ) I. Agronomic charateristics , yield and nutritive value of winter rye (추파용 호밀에 대한 액상분뇨 시비 연구 I. 생육특성 및 사초수량에 미치는 영향)

  • Shin, D.E.;Kim, D.A.;Shin, J.S.;Seo, S.;Kim, W.H.;Kim, J.G.;Yook, W.B.;Chung, J.R.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.3
    • /
    • pp.235-242
    • /
    • 1998
  • This experiment was carried out to determine agronomic characteristics, nutritive value and yield (DM, CP) of Winter Rye as affected by different slurry application on the basis of N contents respectively and was arranged as a randomized complete block design with seven treatments (chemical fertilizer 160kg Nha, cattle sluny 160 . 320 480kg Nha, swine slurry 160 . 320 480kg Nha) and conducted at National Livestock Research Institute, RDA, in Suweon 6om Sep. 1996. to Apr. 1997. The results obtained are summarized as follows : Plant height and leaf length was influenced by slurry application, was orderly ranked cattle sluny 480kg N1 ha > chemical fertilizer 160kg Nha > swine slurry 480kg Nha. Tiller number was increased with cattle slurry application, especilly, the effect of cattle slurry 480kg Nha was obvious but plot of swine slurry tended not to be regular. Crude protein content of rye increased as slurry application level was increased (p< 0.05), but not significant difference was found ADF and NDF content of rye. RFV(Re1ative Feed Value) of rye as affected by slurry application was classified as Grade 2 in all treatments at harvest, according to the forage quality standard assigned by AFGC. Dry matter yield was shown fiom 4,006 kgha to 8,037 kgha as affected by cattle slurry application, in the case of swine slurry application was shown ffom 4,594 kgha to 6,230 kgha (p< 0.05).

  • PDF

Effect of Application Level of Swine Slurry on Growth Characteristics and Yield of Sorghum$\times$Sudangrass Hybrid and $NO_3-N$ Content in Infiltration Water (돈분액비 시용수준이 수수$\times$수단그라스 교잡종의 생육특성, 수량 및 용탈수 중 $NO_3-N$ 함량에 미치는 영향)

  • Lim Young-Chul;Yoon S.H.;Kim J.G.;Kim W.H.;Choi G.J.;Seo S.;Yook W.B.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • This experiment was conducted to investigate the effect of application level of swine slurry on the growth characteristics and yield of sorghum$\times$sudangrass hybrid and $NO_3-N$ content in infiltration at experimental field of Grassland and Forage Crops Division, National Livestock Research Institute, RDA from 2000 to 2002. Treatments were consisted of non fertilizer(NF), chemical fertilizer(CF), 100% swine slurry(SS 100), 150% swine slurry(SS 150), 200% swine slurry(SS 200) and 100% swine slurry + CF 50%(SS100 + CF 50) with randomized complete block design and three replications. Growth of sorghum$\times$sudangrass hybrid was not nearly different among the treatments, but early growth of swine slurry treatments was better than that of CF, and regrowth after 1st cutting was shown better in CF and SS 100+CF 50 with adding application of chemical fertilizer. The sugar content(brix %) was tends to be increased with swine slurry application. Dry matter(DM) yields of SS 100 and SS 150 were lower 15 and 6% than that of CF, respectively, and SS 200 was similer to CF, but there was not found significant difference among all treatments. The content of crude protein(CP), acid detergent fiber(ADF), and neutral detergent fiber(NDF) did not show the difference. The content of $NO_3-N$ in infiltration water was not more than CF by the 55 150 application, but more than by SS 200 and 55 100+CF 50 treatment.

  • PDF

The Study on the Application Level of Swine Slurry in Grassland Pasture (초지에서의 돈분액비 시용수준에 관한 연구)

  • Yoon Sei-Hyung;Lim Young-Chul;Kim Jong-Geun;Jeong Eui-Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.2
    • /
    • pp.63-68
    • /
    • 2006
  • This experiment was carried out to investigate the availability of swine slurry on mixed grassland pasture. Three types of fertilizer was used, chemical fertilization($N-P_2O_5-K_2O=210-150-180kg/ha$), no fertilization and swine slurry was further subdivide into three groups (100%, 150%, 200%) as compared to the level of N used in the chemical fertilizer. The results showed that dry mater yield of forage was increased with increasing application level of swine slurry. Production of dry matter of swine slurry 200% was similar to that of chemical fertilizer, but percentage of legume in mixed pasture was lower in chemical fertilization. Percentage of legume was increased with increasing application level of swine slurry. Level of $NO_3-N$ in filtered water was very low in all groups applied with swine slurry. Based on this results the optimum level of swine slurry application is 200% of the normal standard of N fertilizer used in grassland pasture.

Biogas Production by Anaerobic Co-digestion of Livestock Manure Slurry with Fruits Pomace (가축분뇨와 과실착즙박의 혼합 혐기소화에 따른 바이오가스 생산)

  • Byeon, Jieun;Ryoo, Jongwon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.5-13
    • /
    • 2019
  • This study is conducted to investigate the effects of anaerobic treatments of swine manure slurry alone and combination of livestock manure slurry and fruit pomace on biogas production. Anaerobic co-digestion was evaluated in mesophilic tank reactors for 96 day-incubation period. The organic matter loading of anaerobic digestion was 1 kg of volatile solids(VS) per $1m^3{\cdot}day$. The highest methane production was achieved from the combination of swine manure slury and mandarin pomace(70:30) treatment, whereas the lowest daily and cumulative methane yields was observed in swine manure slurry alone treatment. More than two-fold increase in bio-gas and methane production was obtained by combination of livestock manure slurry and mandarin pomace treatment, compared to the swine manure slurry alone treatment. The co-digestion of livestock manure and fruits pomace has advantages to enhance the production of methane gas, compared to digestion of swine manure slurry alone.