• Title, Summary, Keyword: Spent Fuel

Search Result 964, Processing Time 0.051 seconds

A STUDY FOR DOSE DISTRIBUTION IN SPENT FUEL STORAGE POOL INDUCED BY NEUTRON AND GAMMA-RAY EMITTED IN SPENT FUELS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.174-182
    • /
    • 2011
  • With the reactor operation conditions - 4.3 wt% $^{235}U$ initial enrichment, burn-up 55,000 MWd/MTU, average power 34 MW/MTU for three periods burned time for 539.2 days per period and cooling time for 100 hours after shut down, to set up the condition to determine the minimum height (depth) of spent fuel storage pool to shut off the radiation out of the spent fuel storage pool and to store spent fuels safely, the dose rate on the specific position directed to the surface of spent fuel storage pool induced by the neutron and gamma-ray from spent fuels are evaluated. The length of spent fuel is 381 cm, and as the result of evaluation on each position from the top of spent fuel to the surface of spent fuel storage pool, it is difficult for neutrons from spent fuels to pass through the water layer of maximum 219 cm (600 cm from the floor of spent fuel storage pool) and 419 cm (800 cm from the floor of spent fuel storage pool) for gamma-ray. Therefore, neutron and gamma-ray from spent fuels can pass through below 419 cm (800 cm from the floor) water layer directed to the surface of spent fuel storage pool.

Compression Force/Position Control of Hydraulic Compact System (구조 폐기물 압축 장치의 위치 제어)

  • 송상호;김영환;윤지섭;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.238-238
    • /
    • 2000
  • In this paper, to increase the utilization of uranium resources contained in the spent fuel, the spent fuel is reused. for this, the spent fuel is dismantled or spent fuel rod is extracted from the spent fuel assembly. Therefore, to achieve the performance of compacting the spent fuel assembly, we proposed the controller consisting of adaptive and fuzzy with teaming algorithm. In order to show the performance of proposed algorithm compares, we compared the controller with conventional controller in plant.

  • PDF

Design of the Dry Powder Device and Slitting Machine Device (탈피복 기계 장치와 건식 분말화 장치 설계)

  • 정재후;윤지섭;김영환;이종열;홍동희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.630-633
    • /
    • 1997
  • Spent fuel decladding device and dry voloxidizer is to separate the spent pellet from spent fuel rod cut by 250mm and to convert the spent pellet into powder form for reuse and/or disposal of the spent fuel. There are two methods in decladding and voloxidation of spent fuel, that is, wet method with chemical material and dry method with mechanical device. In this study, to examine the fuel rod decladding process and the pellet voloxidation process, the devices for the spent fuel decladding and the pellet voloxidation with dry method are developed. The decladding machine is designed to separate pellets from fuel rod by slitting device. And, the voloxidizer is designed to convert the spent pellet which is ceramic form into powder form by oxidation using the multi step mesh, vibrator, and air in the high temperature environment. The result of this study, such as operation condition et., will be utilized in the design of the machine for demonstration.

  • PDF

Reference Spent Fuel and Its Characteristics for a Deep Geological Repository Concept Development

  • Choi, Jong-Won;Ko, Won-Il;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.23-38
    • /
    • 1999
  • This study addresses the reference spent fuel and its characteristics for developing a geological repository concept. As a disposal capacity of the reference repository system to be developed, spent fuel inventories were projected based on the basis of the Nuclear Energy Plan of the Long-term National Power Program. The reference spent fuel encompassing a variability in characteristics of all existing and future spent fuels of interest was defined. Key parameters in the reference fuel screening processes were the nuclear and mechanical design parameters and the burnup histories for existing spent fuels as of 1996 and for future spent fuels with the more extended burnup the initial enrichment and its expected turnup. The selected reference fuel was characterized in terms of initial enrichment, bumup, dimension, gross weight and age. Also the isotopic composition and the radiological properties are quantitatively identified. This information provided in this study could be used as input for repository system development and performance assessment and applied in fuel material balance evaluation for the various types of back-end fuel cycle studies.

  • PDF

DEVELOPMENT OF GEOLOGICAL DISPOSAL SYSTEMS FOR SPENT FUELS AND HIGH-LEVEL RADIOACTIVE WASTES IN KOREA

  • Choi, Heui-Joo;Lee, Jong Youl;Choi, Jongwon
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.29-40
    • /
    • 2013
  • Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel) for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

Technology Trends in Spent Nuclear Fuel Cask and Dry Storage (사용후핵연료 운반용기 및 건식저장 기술 동향)

  • Shin, Jung Cheol;Yang, Jong Dae;Sung, Un Hak;Ryu, Sung Woo;Park, Yeong Woo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.110-116
    • /
    • 2020
  • As the management plan for domestic spent nuclear fuel is delayed, the storage of the operating nuclear power plant is approaching saturation, and the Kori 1 Unit that has reached its end of operation life is preparing for the dismantling plan. The first stage of dismantling is the transfer of spent nuclear fuel stored in storage at plants. The spent fuel management process leads to temporary storage, interim storage, reprocessing and permanent disposal. In this paper, the technical issues to be considered when transporting spent fuel in this process are summarized. The spent fuels are treated as high-level radioactive waste and strictly managed according to international regulations. A series of integrity tests are performed to demonstrate that spent fuel can be safely stored for decades in a dry environment before being transferred to an intermediate storage facility. The safety of spent fuel transport container must be demonstrated under normal transport conditions and virtual accident conditions. IAEA international standards are commonly applied to the design of transport containers, licensing regulations and transport regulations worldwide. In addition, each country operates a physical protection system to reduce and respond to the threat of radioactive terrorism.

Development of the Interface Module for an Effective Application of a Digital Mockup

  • Song, Tai-Gil;Kim, Sung-Hyun;Lim, Gwang-Mook;Yoon, Ji-Sup;Lee, Sang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.2407-2409
    • /
    • 2005
  • As the cumulative amount of spent fuel increases, the reliable and effective management of the spent fuel has become a world-wide mission. For this mission, KAERI is developing the Advanced Spent Fuel Conditioning Process (ACP) as a pre-disposal treatment process for spent fuel. Conventional approach to the development of the process and the remote operation technology is to fabricate the process equipment on the same scale as the real environment and demonstrate the remote handling operation using simulated fuel called a mock-up test. But this mock-up test is expensive and time consuming, since the design may need to be modified and the equipment fabricated again to account for the problems found during a testing. To deal with this problem, we developed a digital mockup for the ACP. Also, for an effective utilization of the digital mockup, we developed user interface modules such as the data acquisition and display module and the external input device interface module. The result of this implementation shows that a continuous motion of the manipulator using the external device interface can be represented easily and the information display screens responded well to the simulation situation.

  • PDF

Integral nuclear data validation using experimental spent nuclear fuel compositions

  • Gauld, Ian C.;Williams, Mark L.;Michel-Sendis, Franco;Martinez, Jesus S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1226-1233
    • /
    • 2017
  • Measurements of the isotopic contents of spent nuclear fuel provide experimental data that are a prerequisite for validating computer codes and nuclear data for many spent fuel applications. Under the auspices of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) and guidance of the Expert Group on Assay Data of Spent Nuclear Fuel of the NEA Working Party on Nuclear Criticality Safety, a new database of expanded spent fuel isotopic compositions has been compiled. The database, Spent Fuel Compositions (SFCOMPO) 2.0, includes measured data for more than 750 fuel samples acquired from 44 different reactors and representing eight different reactor technologies. Measurements for more than 90 isotopes are included. This new database provides data essential for establishing the reliability of code systems for inventory predictions, but it also has broader potential application to nuclear data evaluation. The database, together with adjoint based sensitivity and uncertainty tools for transmutation systems developed to quantify the importance of nuclear data on nuclide concentrations, are described.

Graphic Simulator for Analyzing the Remote Operation of the Advanced Spent Fuel Conditioning Process

  • Song, Tai-Gil;Kim, Sung-Hyun;Lee, Jong-Ryul;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.1319-1322
    • /
    • 2003
  • KAERI is developing the Advanced Spent Fuel Conditioning Process (ACP) as a pre-disposal treatment process for spent fuel. Equipment used for such a spent fuel recycling and management process must operate in intense radiation fields as well as in a high temperature. Therefore, remote maintenance has a played a significant role in this process because of combined chemical and radiological contamination. Hence suitable remote handling and maintenance technology needs to be developed along with the design of the process concepts. To do this, we developed the graphic simulator for the ACP. The graphic simulator provides the capability of verifying the remote operability of the process without fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the graphic simulator, not in a real environment. The graphic simulator will substantially reduce the cost of the development of the remote handling and maintenance procedure as well as the process equipment, while at the same time producing a process and a remote maintenance concept that is more reliable, easier to implement, and easier to understand.

  • PDF