• Title, Summary, Keyword: Sensorless vector control

Search Result 248, Processing Time 0.105 seconds

Speed Sensorless Vector Control for AC servo Motor Using Flux observer

  • Hong, Jeng-pyo;Kwon, Soon-Jae;Hong, Soon-Ill
    • Journal of the Korean Society of Marine Engineering
    • /
    • v.28 no.2
    • /
    • pp.185-191
    • /
    • 2004
  • This study describes the scheme of vector drive system without speed sensor for AC servo motor using theory of a flux observer and based on the field oriented vector control. The new method of speed estimation is presented from operate with the position and magnitude of the secondary flux which obtain from the voltage reference and detected current. As the estimated speed is settled by the flux and the machine-specific parameters. this method don't need to adjust the gain of the parameter. Based on the derived theory for vector control. the scheme for sensorless vector drive of AC servo motor is designed and realized. And the experiment verifies it passable to realize the sensorless vector drive based on a field-oriented type.

Auto-measurement of Motor Parameters for Sensorless Vector Control of Induction Motors (센서리스 벡터제어를 위한 유도전동기 상수의 자동 측정)

  • 김경서;강기호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.552-559
    • /
    • 2000
  • Most of the sensorless vector control methods use the equivalent circuit of induction motors. Therefore parameter auto-measurement of drive motor is essential function in commercial sensorless vector control inverters. The accuracy of motor parameter measurement greatly affects the performance of sensorless vector control. In this paper limitations of conventional measurement methods are examined, and new measurement methods are proposed to solve those limitations.

  • PDF

Sensorless Control of a PMSM at Low Speeds using High Frequency Voltage Injection

  • Yoon Seok-Chae;Kim Jang-Mok
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • This paper describes the two control techniques to perform the sensorless vector control of a PMSM by injecting the high frequency voltage to the stator terminal. The first technique is the estimation algorithm of the initial rotor position. A PMSM possesses the saliency which produces the ellipse of the stator current when the high frequency voltage is injected into the motor terminal. The major axis angle of the current ellipse gives the rotor position information at a standstill. The second control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is calculated by appropriate signal processing to extract the position information from the stator current at low speeds or standstill. The proposed sensorless algorithm using the double-band hysteresis controller exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes. Speed, position estimation and vector control were carried out on the floating point processor TMS320VC33.

A Novel Sensorless Low Speed Vector Control for Synchronous Reluctance Motors Using a Block Pulse Function-Based Parameter Identification

  • Ahmad Ghaderi;Tsuyoshi Hanamoto;Teruo Tsuji
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.235-244
    • /
    • 2006
  • Recently, speed sensorless vector control for synchronous reluctance motors (SYRMs) has deserved attention because of its advantages. Although rotor angle calculation using flux estimation is a straightforward approach, the DC offset can cause an increasing pure integrator error in this estimator. In addition, this method is affected by parameter fluctuation. In this paper, to control the motor at the low speed region, a modified programmable cascaded low pass filter (MPCPLF) with sensorless online parameter identification based on a block pulse function is proposed. The use of the MPCLPF is suggested because in programmable, cascade low pass filters (PCLPF), which previously have been applied to induction motors, the drift increases vastly wl)en motor speed decreases. Parameter identification is also used because it does not depend on estimation accuracy and can solve parameter fluctuation effects. Thus, sensorless speed control in the low speed region is possible. The experimental system includes a PC-based control with real time Linux and an ALTERA Complex Programmable Logic Device (CPLD), to acquire data from sensors and to send commands to the system. The experimental results show the proposed method performs well, speed and angle estimation are correct. Also, parameter identification and sensorless vector control are achieved at low speed, as well as, as at high speed.

Sensorless Induction Motor Vector Control Using Stator Current-based MRAC (고정자 전류 기반의 모델 기준 적응 제어를 애용한 유도전동기의 센서리스 벡터제어)

  • 박철우;최병태;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.692-699
    • /
    • 2003
  • A novel rotor speed estimation method using Model Reference Adaptive Control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed mettled, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estmation error is unclear. Yet, in the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation and is robust to the parameters error In addition, the proposed method of offers a considerable improvement in the performance of a sensorless vector controller at a low speed. The superiority of the proposed method is verified by simulation and experiment in a low speed region and at a zero-speed.

Sensorless Vector Control for High performance Drive of IPMSM (IPMSM의 고성능 드라이브를 위한센서리스 벡터제어)

  • Lee, Jung-Chul;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.126-131
    • /
    • 2002
  • This paper is proposed to position and speed control of interior permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. The rotor position, which is an essential component of any vector control schemes, is calculated through the instantaneous stator flux position and an estimated flux value of rotating reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The validity of the proposed sensorless scheme is confirmed by simulation and its dynamic performance is examined in detail.

Slip Estimated Sensorless Vector Controller (슬립추정 센서리스 벡터 제어기)

  • Han, Sang-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2299-2304
    • /
    • 2010
  • A sensorless vector control of an induction motor provides a good performance in the middle and high speed region. However, in the low speed region, it is very difficult to implement the sensorless vector controller because the feeding voltage measured by the motor is very low. In this paper, we designed the sensorless vector controller of an induction motor using the estimate of the slip frequency. To verify the performance of the proposed controller, an experiment has been performed.

The P/PI Mode Switching Method of Gopinath Flux Observer for Sensorless Vector Control of Induction Motors (유도전동기 센서리스 벡터제어를 위한 고피나스 자속관측기의 P/PI 모드 전환)

  • Kang, Myeong-Kyu;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1732-1739
    • /
    • 2017
  • This paper presents a sensorless vector control algorithm of closed loop Gopinath flux observer to enhance the robustness at low speed by switching P/PI mode. Closed loop Gopinath flux observer has the problem in sensorless vector control of induction motor at low speed. This paper solves the problem using the characteristic function of closed loop Gopinath flux observer. P mode shows better performance than PI mode under the cut-off frequency of observer. But P mode always has a flux error due to DC offset, so this paper combines P mode and PI mode. This algorithm shows good performance over wide speed range. The performance has been confirmed through computer simulations using MATLAB SIMULINK and experiments.

Performance Improvement of High Speed Operation for Sensorless based Synchronous Machine (회전자 위치센서 없는 동기전동기의 고속 운전 성능 개선)

  • Jung, Young-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.439-444
    • /
    • 2018
  • The performance improvement in the high speed region for the sensorless based synchronous machine drive is discussed in the paper. Conventional dynamic overmodulation method in the vector controlled AC driver requires some calculation of maximum amplitude of the applying voltage vector to limit its amplitude, which leads to increase the calculation time of microprocessor. For low performance microprocessor, this might be impossible to complete the control loop within limited control time. Thus, to reduce the calculation time, the constantly limited amplitude for applying voltage vector is tried in this paper to drive sensorless based synchronous motor. Certainly, there exists some errors in amplitude and phase angle between inverter voltage and calculating voltage in the sensorless algorithm. But, this errors are too small to prevent the high speed sensorless operation within overmodulation region. The validities of the proposed method is proved by the experimental results.

Sensorless Vector Control Using Tabu Search Algorithm (타부 탐색을 이용한 센서리스 벡터 제어)

  • Lee, Yang-Woo;Park, Kyung-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2625-2632
    • /
    • 2009
  • Recently, a speed control method of induction motor by vector control theory is applied to highly efficient industrial field. The speed sensors attached to motor are used for detection of rotating speed. In the case using speed sensor, the installation of cable for minimization of electric noise, weaken maintenance, increase of price are demerit. Therefore the study of speed sensorless vector control theory performed activity. The design of sensorless vector controller for induction motor using tabu search is studied. The proposed sensorless vector control for Induction Motor is composed of two parts. The first part is for optimizing the speed estimation with initial PI parameters. The second part is for optimizing the speed control with initial PI parameters using tabu search. Proposed tabu search is improved by neighbor solution creation using Triangular random distribution. In order to show the usefulness of the proposed method, we apply the proposed controller to the sensorless speed control of an actual AC induction Motor System. The performance of this approach is verified through simulation and the experiment.