• Title, Summary, Keyword: Semi-active

Search Result 605, Processing Time 0.032 seconds

The Decoding Approaches of Genetic Algorithm for Job Shop Scheduling Problem (Job Shop 일정계획 문제 풀이를 위한 유전 알고리즘의 복호화 방법)

  • Kim, Jun Woo
    • The Journal of Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-119
    • /
    • 2016
  • Purpose The conventional solution methods for production scheduling problems typically focus on the active schedules, which result in short makespans. However, the active schedules are more difficult to generate than the semi active schedules. In other words, semi active schedule based search strategy may help to reduce the computational costs associated with production scheduling. In this context, this paper aims to compare the performances of active schedule based and semi active schedule based search methods for production scheduling problems. Design/methodology/approach Two decoding approaches, active schedule decoding and semi active schedule decoding, are introduced in this paper, and they are used to implement genetic algorithms for classical job shop scheduling problem. The permutation representation is adopted by the genetic algorithms, and the decoding approaches are used to obtain a feasible schedule from a sequence of given operations. Findings The semi active schedule based genetic algorithm requires slightly more iterations in order to find the optimal schedule, while its execution time is quite shorter than active schedule based genetic algorithm. Moreover, the operations of semi active schedule decoding is easy to understand and implement. Consequently, this paper concludes that semi active schedule based search methods also can be useful if effective search strategies are given.

A Study on the Application of Semi-active Suspension System to a 3-D Full Vehicle Model (전차 모델에 대한 반능동 현가장치의 적용에 대한 연구)

  • 방범석;백윤수;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.938-944
    • /
    • 1994
  • Active damping has been shown to offer increased suspension performance in terms of vehicle isolation, suspension packaging, and road-tire contract force. Many semi-active damping strategies have been introduced to approximate the response of active damping with the modulation of passive damping parameters. This study investigates the characteristics of semi-active suspension control through the simulation of passive, skyhook active, and semi-active damping models. A quarter car model is studied with the conrolled damping replacing both passive and active damping. A new semi-active scheme is suggested to eliminate the abrupt changes in semi-active damping force. It is shown that the new strategy performs almost identically to the so called "force controlled" semi-active law without steep changes in damping force or body acceleration.eleration.

  • PDF

An innovative hardware emulated simple passive semi-active controller for vibration control of MR dampers

  • Zhang, Jianqiu;Agrawal, Anil K.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.831-846
    • /
    • 2015
  • Magneto-Rheological (MR) dampers are being used increasingly because of their adaptability to control algorithms and reliability of passive systems. In this paper, an extensive investigation on performance of MR dampers in semi-active and passive modes has been carried out. It is observed that the overall energy dissipation by MR dampers in passive-on modes is higher than that in semi-active modes for most of the competitive semi-active controllers. Based on the energy dissipation pattern, a novel semi-active controller, termed as "Simple Passive Semi-Active Controller", has been proposed for MR dampers. This controller can be emulated by a simple passive hardware proposed in this paper. The proposed concept of controller "hardware emulation" is innovative and can also be implemented for other semi-active devices for control algorithms of certain form. The effectiveness and reliability of the proposed controller has been investigated extensively through numerical simulations. It has been demonstrated that the proposed controller is competitive to or more effective than other widely used / investigated semi-active controllers.

Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes

  • Oncu-Davas, Seda;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.227-242
    • /
    • 2019
  • Seismic isolation systems employ structural control that protect both buildings and vibration-sensitive contents from destructive effects of earthquakes. Structural control is divided into three main groups: passive, active, and semi-active. Among them, semi-active isolation systems, which can reduce floor displacements and accelerations concurrently, has gained importance in recent years since they don't require large power or pose stability problems like active ones. However, their seismic performance may vary depending on the variations that may be observed in the mechanical properties of semi-active devices and/or seismic isolators. Uncertainties relating to isolators can arise from variations in geometry, boundary conditions, material behavior, or temperature, or aging whereas those relating to semi-active control devices can be due to thermal changes, inefficiencies in calibrations, manufacturing errors, etc. For a more realistic evaluation of the seismic behavior of semi-active isolated buildings, such uncertainties must be taken into account. Here, the probabilistic behavior of semi-active isolated buildings under historical pulse-like near-fault earthquakes is evaluated in terms of their performance in preserving structural integrity and protecting vibration-sensitive contents considering aforementioned uncertainties via Monte-Carlo simulations of 3-story and 9-story semi-active isolated benchmark buildings. The results are presented in the form of fragility curves and probability of failure profiles.

A semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers

  • Ying, Z.G.;Ni, Y.Q.;Ko, J.M.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.69-79
    • /
    • 2009
  • A non-clipped semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers is developed based on the stochastic averaging method and stochastic dynamical programming principle. A nonlinear stochastic control structure is first modeled as a semi-actively controlled, stochastically excited and dissipated Hamiltonian system. The control force of an MR damper is separated into passive and semi-active parts. The passive control force components, coupled in structural mode space, are incorporated in the drift coefficients by directly using the stochastic averaging method. Then the stochastic dynamical programming principle is applied to establish a dynamical programming equation, from which the semi-active optimal control law is determined and implementable by MR dampers without clipping in terms of the Bingham model. Under the condition on the control performance function given in section 3, the expressions of nonlinear and linear non-clipped semi-active optimal control force components are obtained as well as the non-clipped semi-active LQG control force, and thus the value function and semi-active nonlinear optimal control force are actually existent according to the developed strategy. An example of the controlled stochastic hysteretic column is given to illustrate the application and effectiveness of the developed semi-active optimal control strategy.

A Robust Semi-active Suspension Control Law (반능동 현가시스템의 Robust 제어 법칙)

  • Yi, K.S.;Suh, M.W.;Oh, T.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.117-126
    • /
    • 1994
  • This paper deals with a robust semi-active control algorithm which is applicable to a semi-active suspension with a multi-state damper. Since the controllable damping rates are discrete in case of a multi-state semi-active damper, the desired damping rate can not be produced exactly even if force-velocity relations of a multi-state semi-active damper is completely known. In addition, damping characteristics of the semi-active dampers are different from damper to damper. A robust nonlinear control law based on sliding control is developed. The main objective of the proposed control strategies is to improve ride quality by tracking the desired active force with a multi-state damper of which the force-velocity relations are "not" completely known. The performance of th proposed semi-active control law is numerically compared to those of the control law based on a bilinear model and a passive suspension. The proposed control algorithm is robust to nonlinear characteristics and uncertainty of the force-Velocity relations of multi-state dampers.

  • PDF

Experimental Study of Design for Semi - Active suspension system for Railway Vehicle with narrow gauge (협궤 차량용 준능동형 현가 시스템 설계의 시험적 연구)

  • Lee Nam-Jin;Kim Chul-Gun;Nam Hak-Gi
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.811-815
    • /
    • 2005
  • Traditional passive suspension has limitations to meet the required specifications of high level trains, and so Active suspension system is proposed to meet the requirements with active components which could be controlled by external signal for optimized behavior of train. Active suspension is to be divided by Full active suspension and Semi-active suspension whether using the external power source or not, and though the performance of Semi-Active suspension is worse than Full one. Semi-active suspension is focused with its effectiveness per cost. Semi-Active suspension system consists of sensors, ECU (electrical control unit), and variable damper, which are to be designed to be fit for train system. And the software of ECU is to be developed for to be suited to its dynamic behavior through simulation result calculated by proven model. In this experimental study, the hardware and software of semi-active suspension system is to be realized and its performance for improvement of ride quality to be confirmed through roller rig test.

  • PDF

Influence of Semi-Active Suspension on Running Safety of Vehicles

  • Liu, Hong-You;Yu, Da-Lian
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.147-151
    • /
    • 2009
  • Railway vehicles equipped with semi-active suspension system can improve the ride quality of car bodies. Semi-active suspension system is usually applied onto high speed train, and therefore higher running safety requirement is proposed. The influence of semi-active suspension system on safety of vehicles running on straight line and curve line is studied, and the influences of sky hook damping coefficient and system time-delay on operation safety of cars fitted with semiactive suspension system is analyzed. The results show that the vehicles equipped with semi-active suspension system, not only the vibration of car body is decreased, it can also give little influence on running safety of cars, as a result, it will not endanger the running safety of cars.

  • PDF

Semi-active control of seismic response of a building using MR fluid-based tuned mass damper

  • Esteki, Kambiz;Bagchi, Ashutosh;Sedaghati, Ramin
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.807-833
    • /
    • 2015
  • While tuned mass dampers are found to be effective in suppressing vibration in a tall building, integrating it with a semi-active control system enables it to perform more efficiently. In this paper a forty-story tall steel-frame building designed according to the Canadian standard, has been studied with and without semi-active and passive tuned mass dampers. The building is assumed to be located in the Vancouver, Canada. A magneto-rheological fluid based semi-active tuned mass damper has been optimally designed to suppress the vibration of the structure against seismic excitation, and an appropriate control procedure has been implemented to optimize the building's semi-active tuned mass system to reduce the seismic response. Furthermore, the control system parameters have been adjusted to yield the maximum reduction in the structural displacements at different floor levels. The response of the structure has been studied with a variety of ground motions with low, medium and high frequency contents to investigate the performance of the semi-active tuned mass damper in comparison to that of a passive tuned mass damper. It has been shown that the semi-active control system modifies structural response more effectively than the classic passive tuned mass damper in both mitigation of maximum displacement and reduction of the settling time of the building.

A Study on the Field Test Characteristics of Semi-Active Suspension System with Continuous Damping Control Damper (감쇠력 가변댐퍼를 이용한 반능동 현가장치의 실차실험 특성에 관한 연구)

  • Lee, K.H.;Lee, C.T.;Jeong, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.32-38
    • /
    • 2010
  • A semi-active suspension is an automotive technology that controls the vertical movement of the vehicle while the car is driving. The system therefore virtually eliminates body roll and pitch variation in many driving situations including cornering, accelerating, and braking. This technology allows car manufacturers to achieve a higher degree of both ride quality and car handling by keeping the tires perpendicular to the road in corners, allowing for much higher levels of grip and control. An onboard computer detects body movement from sensors located throughout the vehicle and, using data calculated by opportune control techniques, controls the action of the suspension. Semi-active systems can change the viscous damping coefficient of the shock absorber, and do not add energy to the suspension system. Though limited in their intervention (for example, the control force can never have different direction than that of the current speed of the suspension), semi-active suspensions are less expensive to design and consume far less energy. In recent time, the research in semi-active suspensions has continued to advance with respect to their capabilities, narrowing the gap between semi-active and fully active suspension systems. In this paper we are studied the characteristics of vehicle movement during the field test with conventional and semi-active suspension system.

  • PDF