• Title, Summary, Keyword: Sediment cell

Search Result 91, Processing Time 0.046 seconds

Prediction of Watershed Erosion and Deposition Potentials (유역침식 및 퇴적 잠재능 예측모델 개발)

  • Son, Kwang-Ik
    • Journal of Korean Society of Hazard Mitigation
    • /
    • v.7 no.1
    • /
    • pp.67-72
    • /
    • 2007
  • A model for predicting potentials of land erosion and deposition over a natural basin was developed based on the mass balance principle. The program was developed based on sediment mass balance principle for each cell in a GIS. Sediment yield from a cell was estimated with RUSLE. The outflow sediment from a cell was calculated by multiplying the sediment yield of the cell by the sediment delivery ratio (SDR) of the cell. The outflow sediment from the upstream cell becomes the incoming sediment of the downstream cell. Therefore the erosion and deposition potential of each cell could be determined from the sediment mass balance i.e., the difference between the incoming and outflow of sediments of each cell. The developed model was validated by comparing the predicted sediment yields for three basins with measured data.

A Study on Electricity Generation of Marine Sediment Cells (해양 퇴적토전지의 발전 특성에 대한 연구)

  • Lee, Eun-Mi;Kwon, Sung-Hyun;Rhee, In-Hyoung;Park, Byung-Gi;Cho, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.647-653
    • /
    • 2011
  • Sediment cell is renewable energy which produces electric energy using immanent ingredients or reducing power of marine sediment as natural resources. Also the cell has an advantage that environmental pollution can be reduced through conversion of organic and inorganic contaminants into inert matter with generation of the energy. In this paper, we compared characteristics of electricity generation of the two different sediment cells, and investigated the regeneration effect of the sediment cells with manipulation of the sediment such as mixing and re-positioning. The results showed that 14.1 $W/m^2$ of power was obtained with the aluminum electrode, and the mixing of the sediment could increase the power by 4 $W/m^2$ compared to the control. Also, mixing the sediment has kept electricity for 4 weeks at a relatively constant level, which implied 'fuel regeneration effect'. Meanwhile, the sediment cell was proved to be effective in reduction of COD, which was up to 28.6%.

Studies on Toxicological Evaluation of Freshwater Sediment using a PLHC-1 Cell Comet Assay (PLHC-1세포주의 Comet assay를 이용한 하천 퇴적토의 생태독성평가)

  • Bak, Jeong-Ah;Hwang, In-Young;Baek, Seung-Hong;Kim, Young-Sug
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, the Comet assay (evaluation of DNA damage) used the fish hepatocellular carinoma cell, PLHC-1, was tried to the sediment extract obtained from freshwater to understand its applicability as a tool for monitoring sediment toxicity. In parallel, induced EROD (7-ethoxyresorufin- O-deethylase) activity and DNA damage (TEM values) in PLHC-1 cells were measured for establishing the tandem endpoints of the PLHC-1cell test to test the ecotoxicity of sediment. Among several study sites in a small river passed through downtown and industrial park area, one of them, site B, showed a higher level of EROD activity and DNA damage than other sites. It indicates that a tandem endpoints of PLHC-1 cells could be useful tools for assessing the toxicity of sediment. The sensitivity of Comet assay with PLHC-1 cells was a little higher than that with a blood cell of frog tadpoles to the solvent extract of sediment. According to the results, a PLHC-1 cell-Comet assay could be used as a useful tool for evaluating ecotoxicity of the freshwater sediment. In addition, more detailed studies are needed to the contaminated site.

Characteristics of Electricity Production by Metallic and Non-metallic Anodes Immersed in Mud Sediment Using Sediment Microbial Fuel Cell

  • Haque, Niamul;Cho, Dae-Chul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1745-1753
    • /
    • 2014
  • Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC's performance.. The order of maximum power density was $913mWm^{-2}$ for Zn, $646mWm^{-2}$ for Fe, $387.8mWm^{-2}$ for Cu, $266mWm^{-2}$ for Al, and $127mWm^{-2}$ for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.

Long-term Environmental Changes: Interpretations from a Marine Benthic Ecologist's Perspective (II) -Eutrophication and Substratum Properties

  • Yoo Jae-Won;Hong Jae-Sang;Lee Jae June
    • Fisheries and aquatic sciences
    • /
    • v.2 no.2
    • /
    • pp.210-217
    • /
    • 1999
  • Chemical oxygen demand (COD), phytoplankton cell number and chlorophyll-a concentration (Chl-a), sediment mean grain size and ignition loss were studied to determine their temporal trends in the study area. Historical data of COD, cell number and Chl-a were gathered from the late 1960s or early 1980s to 1997, and trends in temporal domain were obtained from a simple regression. Sediments for grain size and ignition loss (as organic contents in sediments) were sampled from the Chokchon macrotidal flat bimonthly from September 1990 to November 1996, and were analyzed using the decomposition method of time series analysis. In general, the first three data showed increasing trends based on regression analysis. The trends of sediment grain size fluctuated in a neutral pathway while those of ignition loss yielded no increasing pattern. In contrast with the suggestions from Ahn and Choi (1998) who reported a coarsening variation in sediment grain size to be a cause of the directional and remarkable changes of macrofaunal communities in this area, we could not find such a corresponding variation pattern from our samples. In diagnosing eutrophication, a paradoxical phenomenon was encountered between the trends in water column (COD, cell number and Chl-a) and sediment (ignition loss) data. In this paper, we inferred the possible processes that produce the discrepancy. Some explanations and biological responses to eutrophication were predicted and discussed.

  • PDF

Applications of AGNPS model with rural watersheds having complex land use characteristics (복합 토지이용 특성의 농촌유역에 대한 농업비점원오염모형의 적용)

  • 조재필;박승우;강문성
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • /
    • pp.353-358
    • /
    • 1998
  • GRASS-AGNPS model integrated with GIS was applied to rural watersheds having complex land use characteristics and evaluated for its applicability through calibration using observed data. The analyses of raster encoding accuracy and model behavior to runoff, sediment yields and nutrient loads for different cell-size showed that 150 m cell size indicated reasonable applicability of the model. Simulated runoff was in a good agreement with the observed data and simulated peak runoff rate was larger than the observed data. The sediment yield simulated by modified AGNPS model using irregular cell for forest area were less than that of the regular cell method. In predicting sediment yields, the result showed a different trend at each representative rural watershed. Nutrient loads simulated by the model were significantly different from the observed data.

  • PDF

Study on the Difference of Urine Sediment Preparation for Microscopic Examination (현미경검사를 위한 요침사 표본제작에 따른 차이 연구)

  • Lee, Hyeok-Jae;Park, Chul;Seo, Min-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.366-373
    • /
    • 2017
  • Urinalysis is considered to be easier and simpler than other tests. It has been known to cause no burden to patients, while offering important information on diagnosing, treating, and determining the prognoses of kidney and urinary tract diseases. Urinary sediments are usually performed by microscopic examination of centrifuged urine by technologist. The guidelines proposed by the Korean Association of External Quality Assessment Service are actually different from those actually practiced by medical institutions and taught to biomedical students in textbooks. Therefore, we verified whether different sediment preparation methods lead different test results. Specimens that tested positive from the occult blood and leukocyte esterase in the urine dipstick test were randomly selected for a microscopic examination. The differences in the urine sediment preparation affected the sediment concentrations, which influenced the cell grade and cell number per HPF. The first factor in determining the sediment concentration is the centrifugal force. Many medical institutions use 1,500 rpm as the centrifugal speed without considering the radius of the centrifuge; such a value may not be accurate for 400 G. Consequently, there were differences in urine concentrations, which influenced the results. The second factor is the amount of sediment in urine. Different amounts of the remaining supernatant led to different sediment concentration factors, again, causing different results. Furthermore, not only by using a pipette to obtain an accurate amount as stipulated, but also by roughly obtaining a drop, the microscopic examination using such a volume of sediment examined affected the results. Therefore, this study highlights the importance of standardization of urine sediment preparation procedures to promote consistency and accuracy across institutions.

Electricity Generation and De-contamination Effect for Characteristic Electrode Material in a Microbial Fuel Cell System Using Bay Sediment (MFC의 금속 및 탄소전극에 의한 전기생산 특성과 오염저감 효과)

  • Kwon, Sung-Hyun;Song, Hyung-Jin;Lee, Eun-Mi;Cho, Dae-Chul;Rhee, In-Hyoung
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.951-960
    • /
    • 2010
  • Sediment works as a resource for electric cells. This paper was designed in order to verify how sediment cells work with anodic material such as metal and carbon fiber. As known quite well, sediment under sea, rivers or streams provides a furbished environment for generating electrons via some electron transfer mechanism within specific microbial population or corrosive oxidation on the metal surfaces in the presence of oxygen or water molecules. We experimented with one type of sediment cell using different anodic material so as to attain prolonged, maximum electric power. Iron, Zinc, aluminum, copper, zinc/copper, and graphite felt were tested for anodes. Also, combined type of anodes-metal embedded in the graphite fiber matrix-was experimented for better performances. The results show that the combined type of anodes exhibited sustainable electricity production for ca. 600 h with max. $0.57\;W/m^2$ Al/Graphite. Meanwhile, graphite-only electrodes produced max. $0.11\;W/m^2$ along with quite stationary electric output, and for a zinc electrode, in which the electricity generated was not stable with time, therefore resulting in relatively sharp drop in that after 100 h or so, the maximum power density was $0.64\;W/m^2$. It was observed that the corrosive reaction rates in the metal electrodes might be varied, so that strength and stability in the electric performances(voltage and current density) could be affected by them. In addition to that, COD(chemical oxygen demand) of the sediment of the cell system was reduced by 17.5~36.7% in 600 h, which implied that the organic matter in the sediment would be partially converted into non-COD substances, that is, would suggest a way for decontamination of the aged, anaerobic sediment as well. The pH reduction for all electrodes could be a sign of organic acid production due to complicated chemical changes in the sediment.

Effects of Sediment Harvesting on Bacterial Community Structure (골재채취가 세균군집구조에 미치는 영향)

  • Park, Ji-Eun;Lee, Young-Ok
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2
    • /
    • pp.172-178
    • /
    • 2006
  • The dynamics of bacterial populations belonging to $\alpha\;\beta\;\gamma-subclass$ proteobacteria, Cytophaga-Flavobacterium (CF) group and sulfate reducing bacteria (SRB) in water column of the middle reaches of Nakdong River depending on sediment harvesting were analyzed by fluorescent in situ hybridization (FISH) at sediment harvesting site (near the Seongju bridge) and non-sediment harvesting site (near the Gumi bridge). In addition, some physico-chemical parameters such as temperature, pH, $chi-\alpha$ and electrical conductivity were measured. Regarding the number of total cell counts, cells stained by DAPI, there were no substantial quantitative differences between both sites, but those fluctuation at sediment Harvesting site was greater. And also the ratios of CFgroup and SRB to total cell counts tend to increase at sediment harvesting site with higher $chl-\alpha$, maybe due to the resuspension of sediment into water column. But the total proportion of all determined bacterial populations to total cell counts were greater at non-sediment harvesting site, compared with those at sediment harvesting site. Since the detectibility of bacteria by FISH depends on their metabolic activity, those lower proportion at the sediment harvesting site implies that sediment harvesting may lead to malfunction of those bacteria respect to nutrient recycling and subsequently negative effects on microbial food web.