• Title, Summary, Keyword: SOC

Search Result 1,721, Processing Time 0.04 seconds

DIVERSITY DESIGN FOR SENSOR DATA ACQUISITION AT COMS SOC

  • Park, Durk-Jong;Koo, In-Hoi;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • /
    • pp.479-481
    • /
    • 2007
  • COMS will transmit its observed data, Sensor Data, through L-Band with linear polarization. To avoid link loss caused by polarization discrepancy between satellite and SOC DATS, the L-Band antenna at SOC DATS should be linearly polarized. However, SOC DATS is supposed to share single antenna with SOC TTC, so the antenna should be circularly polarized. To cope with about 3dB loss, SOC DATS is designed to receive Sensor Data through two orthogonal circular polarizations, RHCP (Right-Hand Circular Polarization) and LHCP (Left-Hand Circular Polarization). Eventually, SOC DATS can obtain 2.6dB of combining gain through diversity combiner in MODEM/BB. This paper presents the verification on the diversity combining of SOC DATS with test configuration and results in depth.

  • PDF

A New Test Technique of SOC Test Based on Embedded Cores for Reducing SOC Test Time (SOC 테스트 시간 축소를 위한 새로운 내장 코어 기반 SOC 테스트 전략)

  • 강길영;김근배;임정빈;전성훈;강성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.97-106
    • /
    • 2004
  • A new test strategy for embedded SOC test is proposed. The SOC test is evaluated by the degree that is the amount of the total reduced test time. Since the test time for a embedded core is determined by the configuration of test wrapper, the total test time is decided by the length of the largest TAM used by the test wrapper. So the DFT(Design for Test) must be involved in the design flow. And the efficient test strategy must be settled. The all Previous test strategies are the methods that find a sub-optimal configurations of scan-chains to minimize the test time after the total TAM lines are divided into a few groups. But this is the NP-complete problem so that all attempts which examine such a TAM configuration and scan-chain division are impossible. In this thesis, a new methodology for this problem is proposed and the efficiency of the methodology is proved.

Paddy Soil Tillage Impacts on SOC Fractions

  • Jung, Won-Kyo;Han, Hee-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.326-329
    • /
    • 2007
  • Quantifying soil organic carbon (SOC) has long been considered to improve our understanding of soil productivity, soil carbon dynamics, and soil quality. And also SOC could contribute as a major soil management factor for prescribing fertilizers and controlling of soil erosion and runoff. Reducing tillage intensity has been recommended to sequester SOC into soil. On the other hand, determination of traditional SOC could barely identify the tillage practices effect. Physical soil fractionation has been reported to improve interpretation of soil tillage practices impact on SOC dynamics. However, most of these researches were focused onupland soils and few researches were conducted on paddy soils. Therefore, the objective of this research was to evaluate paddy soil tillage impact on SOC by physical soil fractionation. Soils were sampled in conventional-tillage (CT), partial-tillage (PT), no-tillage (NT), and shallow-tillage (ST)plots at the National Institute of Crop Science research farm. Samples were obtained at the three sampling depth with 7.5-cm increment from the surface and were sieved with 0.25- and 0.053-mm screen. Soil organic carbon was determined by wet combustion method. Significant difference of SOC contentwas found among sampling soil depth and soil particle size. SOC content tended to increase at the ST plot with increasing size of soil particle fraction. We conclude that quantifying soil organic carbon by physical soil particle fractionation could improve understanding of SOC dynamics by soil tillage practices.

A Study on SOC Measurement of Lead Storage Batteries (연축전지의 SOC 측정에 관한 연구)

  • Lee, In-Hwan;Kim, Myeong-Soo;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.32-33
    • /
    • 2011
  • Recently, researches on SOC(State Of Charge) of batteries are being increased. Techniques of measuring the battery SOC is essential to researches on increasing cycle life of batteries and to electric vehicle battery charging systems. The surface charge phenomenon of lead storage batteries and the needs of SOC measuring techniques are considered. Features of SOC measuring techniques that have been recently developed are also considered.

  • PDF

Comparison of Battery Modelings and SOC Estimation Methods (배터리 모델링 및 SOC 추정기법 비교 연구)

  • Jang, Ki-Wook;Kim, Hyeok-Jin;Chung, Gyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.87-88
    • /
    • 2010
  • 주위온도, 사용연한 및 운전점 등에 의해서 동작특성이 변화되는 배터리의 SOC(State of Charge)를 정확하게 추정하는 것은 매우 어려운 과제이다. SOC를 추정하기 위해서는 배터리의 복잡한 비선형적인 특성을 고려한 등가 모델의 개발이 필요하다. 본 논문은 SOC 추정을 위해 최근까지 수행되었던 연구를 검토하고, SOC 추정을 위해 개발된 배터리 모델 및 추정기법을 비교 분석하고, PSIM 시뮬레이션 연구 결과를 제시한다.

  • PDF

Special theme 3 - 2014년 SOC투자, 효율성 제고에 초점

  • 한국시멘트협회
    • Cement
    • /
    • /
    • pp.16-19
    • /
    • 2014
  • 2014년 국토교통부 예산이 전년대비(22조원, 추경포함) 5% 감소한 20.9조원으로 국회 본회의를 통과하였다. 경기활성화 및 일자리 창출을 감안하여 SOC투자 규모가 크게 줄어들지는 않았지만, 향후 복지지출 등의 수요증가로 SOC투자여건은 계속 어려워질 전망이다. 이러한 가운데 편안하고 접근성이 좋은 SOC에 대한 국민들의 기대수준은 더욱 높아지고 있어 국토교통부는 올해 SOC투자 효율성을 제고하는데 초점을 둔다는 방침이다. 즉 도로, 철도 등 주요 SOC사업의 투자 패러다임의 효율성을 높이고, 국민들의 체감효과도 높이는 방향으로 전환해 나갈 계획이다.

  • PDF

Evaluation of Soil Organic Carbon of Upland Soil According to Fertilization and Agricultural Management Using DNDC Model (DNDC 모형을 이용한 시비와 영농관리에 따른 밭포장의 토양유기탄소 변동 평가)

  • Lee, Kyoungsook;Yoon, Kwangsik;Choi, Dongho;Jung, Jaewoon;Choi, Woojung;Lim, Sangsun
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • To mitigate the impacts of climate change on agricultural ecosystems, development of agricultural management for enhanced soil carbon sequestration is required. In this study, the effects of fertilizer types (chemical fertilizer and manure compost), cropping systems, and crop residue management on SOC(Soil Organic Carbon) sequestration were investigated. Summer corn and winter barley were cultivated on experimental plots under natural rainfall conditions for two years with chemical fertilizer and manure compost. Soil samples were collected conducted and analyzed for SOC for soil. To estimate long-term variation patterns of SOC, DNDC was run with the experimental data and the weather input parameters from 1981 to 2010. DNDC simulation demonstrated SOC reduction by chemical fertilizer treatment unless plant residues are returned; whereas compost treatments increased SOC under the same conditions and SOC increment was proportional to compost application rate. In addition, SOC further increased under corn-barley cropping system over single corn cropping due to more compost application. Regardless of nutrient input type, residue return increased SOC; however, the magnitude of SOC increase by residue return was lower than by compost application.