• Title, Summary, Keyword: SCB

Search Result 121, Processing Time 0.036 seconds

The Effect of Developed SCB Liquid Fertilizer on the Growth of Creeping Bentgrass (개량 SCB 저농도액비가 크리핑벤트그래스의 생육에 미치는 효과)

  • Ham, Suon-Kyu;Kim, Young-Sun
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.100-105
    • /
    • 2011
  • This study was conducted to evaluate the effect of developed SCB(DSCB) produced by adding N, P and K to SCB liquid fertilizer on the growth of creeping bentgrass. Fertilizer treatments were designed as follows; non-fertilizer (NF), control (CF; chemical fertilizer), 100 DSCB (250 $ml{\cdot}m^{-2}$DSCB), 80DSCB (200 $ml{\cdot}m^{-2}$DSCB) and CF+SCB (CF+250 $ml{\cdot}m^{-2}$SCB). Every treatment was arranged in a randomized complete block design with three replications. In creeping bentgrass, turf color index, chlorophyll index, dry weight, shoot number and nutrient content were measured. The results were as follows; Chemical properties of soil was hardly affected by DSCB and SCB applications. Turf color index and chlorophyll index in DSCB and SCB treatment were increased by 2~3% and 14~19% than those in NF, respectively, and similar to those of CF treatment. As applied to DSCB and SCB, shoot number was increased by 7%, 21%, 36% in 100 DSCB, 80 DSCB and CF+SCB than NF, respectively, and by 19% in CF+SCB than in CF. Supplying DSCB and SCB increased dry weight of creeping bentgrass, compared to CF treatment. Compared with CF, nitrogen and P content in tissue was increased in CF+SCB and in 80DSCB, respectively. These results suggested that applications of DSCB and SCB promoted turf quality and growth of creeping bentgrass by enhancing N and P uptake and shoot number.

Side-Effects of SCB Liquid Fertilizer on Seed Germination and Physiological Activity of Pinus densiflora and Maackia amurensis Seedling (소나무와 다릅나무의 종자 발아와 유묘의 생리적 활성에 대한 SCB 액비 효과)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Hyun-Suk;Yoo, Se-Kuel;Kim, Pan-Gi
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.255-262
    • /
    • 2009
  • This study was carried out to investigate the effects of SCB (Slurry Composting & Biofiltration) liquid fertilizer on seed germination properties and physiological activities of P. densiflora and M. amurensis seedling on the sand and tailing soil. Seed germination of two, tree species on the sand and tailing soil was delayed and inhibited under SCB treatment. Seedling growth of two species was also reduced by SCB application, and the growth reduction was associated with its concentration. Chlorophyll content decreased in the leaves of SCB-treated P. densiflora but increased in the leaves of SCB-treated M. amurensis when compared to control seedlings irrigated with tap water. On the other hand, Malondialdehyde (MDA) content, an indicator of lipid peroxidation, decreased in the leaves of SCB-treated P. densiflora, whereas it increased in the leaves of SCB-treated M. amurensis. Antioxidative enzyme activities in the leaves of P. densiflora increased on sand soil treated with 1/6 diluted SCB solution and on tailing soil treated with 1/3 diluted one, whereas those of M. amurensis seedlings increased only on tailing soil applied with the normal SCB solution and the 1/3 diluted SCB solution, respectively. These results were considered as side-effects of SCB liquid fertilizer which might accumulate salt through the physical changes in the soil.c

Effect of Slurry Composting and Bio-filtration (SCB) by Fertigation on Soil Chemical Properties and Growth of Red Pepper (Capsicum annuum L.)

  • Lee, Jong-Eun;Yun, Yeo-Uk;Lee, Jin-Il;Choi, Moon-Tae;Lee, Dong-Soek;Nam, Yun-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.404-412
    • /
    • 2015
  • The slurry composting and bio-filtration (SCB) liquid manure has some obvious advantages including a good source of N, P and K, local availability, effective microorganism and the ability to improve soil properties. This study was conducted to evaluate the influence on the changes of soil chemical properties and yield of red pepper by fertigation cultivation with SCB application for 2 years. Red pepper was transplanted in early May in 2013 and 2014. The treatment with three replication was composed of 4 types as control (N 1.0), SCB 0.5N, SCB 1.0N, and SCB 2.0N standards of recommended nitrogen fertilizer ($19kg\;N\;10a^{-1}$). The fertigation cultivation which was installed the surface drip irrigation system was splitted 10 times as $2.5Mg\;10a^{-1}$ nutritional solution included with chemical fertilizer and SCB every 10 days during the cultivation. The height and width of pepper plant were 7.0% and 5.8% higher in SCB 2.0N treatment than that in control. The yield of red pepper increased with the increasing of SCB application rates from SCB 0.5N to 2.0N. The yield of SCB 1.0N was much better 10% in average than that of control, and there was significant differences among all treatments. pH of control soil after final harvest decreased to 6.1, however pH of SCB treated soils increased from 6.7 to 7.1 depending on SCB application rates. The Exch.-K contents of SCB treated soils were increased 13.7 to 56.9% after final harvest compared with control by $0.51cmol_c\;kg^{-1}$. Accordingly, these results showed that SCB 1.0N application rate as a recommended nitrogen level based on soil testing can be used as an alternative nitrogen management as well as plant nutrition for red pepper cultivation.

Effect of Growth and Yield with SCB Leachate Application Rates in Rice (SCB 퇴비단 여과액비의 시용 수준이 벼 생육과 수량에 미치는 영향)

  • Ryoo, Jong-Won;Park, Chi-Ho;Yoon, Tae-Han
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.631-642
    • /
    • 2012
  • This study was carried out to determine the effect of SCB compost leachate on the growth and yield of rice. Field experiment was conducted on sandy loam soil under the different fertilizer management; 80%, 100%, 130% N level of SCB leachate based on 13kg N/10a of conventional farmer application level and chemical fertilizer as control. The plant height and tiller's number of 80 and 100% N levels of SCB leachate were lower than that of the chemical fertilizer plot. But in the plot of 130% N level of SCB leachate the plant height and tillers was higher than that of chemical fertilizer. And the SPAD reading value of leaf in plot of 130% N level was higher than that of the chemical fertilizer. Rice yield in the 80% and 100% SCB leachate was increased from 12 to 13% that of plot of chemical fertilizer. But rice yield of 130% N-level was decreased 7% compared with chemical fertilizer. Rice quality of the application levels of 80 and 100% SCB leachate levels was significantly better than those of chemical fertilizer and 130% level of SCB leachate. In conclusion, the 100% N application of SCB leachate was improved yield and quality of rice.

Study on the Treatment Performance of SCB-M with Swine Manure (SCB-M의 돈분 처리 성능에 관한 연구)

  • Park, Jong Tae;Kim, Sang Hun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.365-372
    • /
    • 2012
  • Purpose: Performance of slurry composting and biofiltration with methane production (SCB-M) using swine manure and sawdust was evaluated. The suitable specific liquid input (SLI) was determined at lab-scale SCB. Method: In lab-scale SCB, the SLI test was performed at liquid input rate of 0.04, 0.09, $0.17cc/cm^3$ with constant sawdust volume. In pilot-scale SCB-M, the swine manure was fed to methane digester at organic loading rate (OLR) of 0.25-0.5 g VS/L/d. The effluent from methane digester was filtered using SCB. Results: The SLI at $0.04cc/cm^3$ showed good performance in terms of retention time. In pilot-scale SCB, the removal of $NH_3$-N and total nitrogen (T-N) was found to be around 59% and 28%, respectively. Similarly, volatile fatty acid (VFA) and total chemical oxygen demand (TCOD) removal was found be 56% and 43%, respectively. Conclusions: For SCB-M process, the SLI of $0.04cc/cm^3$ is recommended. The performance of swine manure treatment was improved more by using SCB-M system than using methane digester only.

Availability of Slurry Composting and Biofiltration for Cultivation of Cherry Tomato (방울 토마토 재배 시 퇴비단 여과 액비의 이용가능성)

  • Kim, Eun-Young;Park, Bong-Ju;Oh, Myung-Min
    • Protected Horticulture and Plant Factory
    • /
    • v.22 no.4
    • /
    • pp.385-391
    • /
    • 2013
  • In this study, the availability of slurry composting and biofiltration (SCB) solution as an alternative for synthetic nutrient solution was determined by monitoring the growth, fruit yield, and fruit quality of cherry tomato (Solanum lycopersicum L. 'Unicon'). Treatments for nutrient solution were consist of SCB 1/2N, 1N, 2N, and commercial nutrient solution 1N (CNS 1N) based on nitrogen concentration (218.32 $mg{\cdot}L^{-1}$) of cherry tomato nutrient solution (control 1N). All nutrient solution including SCB solution (440~520 mL per day) was supplied to rock wool medium using a timer. After 31 days of transplanting, fresh and dry weights of shoots, leaf area, plant height, stem diameter, SPAD value and number of node were measured. After measuring growth characteristics of tomato plants, total fruit yield, ratio of marketable fruit yield, fruit weight, total soluble solids content, total acidity, total phenolic concentration, and antioxidant capacity were determined once a week for 7 weeks. As a result, among the SCB treatments, SCB 1/2N was similar to control 1N and CNS 1N in terms of fresh and dry weights of shoots, leaf area, stem diameter, number of node, and SPAD value. Increased N concentration of SCB inhibited the growth of tomato plants. Total fruit yield of SCB 1/2N was 47% of that of control 1N which showed the best result. Percentage of marketable fruit yield in SCB 1/2N was about 58%. Soluble solids contents, total acidity, total phenolic concentration and antioxidant capacity was the highest in SCB 2N and the other treatments were not shown any difference. Blossom-end rot rarely occurred in control 1N and CNS 1N while SCB treatments without Ca induced the physiological disorder of 7~19%. In conclusion, SCB 1/2N was good for the vegetative growth of cherry tomato plants but reduced yield and quality of fruit compared with control 1N and CNS 1N. Thus, it is possible to apply SCB solution to grow cherry tomato plants hydroponically but in the consideration of fruits yield and quality additional supply of several minerals would be required.

The Effect of Developed SCB Liquid Fertilizer on the Growth of Kentucky Bluegrass (성분이 추가된 SCB저농도액비가 켄터키블루그래스의 생육에 미치는 효과)

  • Ham, Suon-Kyu;Kim, Young-Sun;Lim, Hye-Jung
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.73-78
    • /
    • 2011
  • This study was conducted to evaluate the effect of developed SCB (DSCB) liquid fertilizer produced by adding N, P and K at SCB liquid fertilizer on the growth of kentucky bluegrass. Two different N sources used in DSCB were ammonium sulfate (DSCB-A) and urea (DSCB-U), respectively. Fertilizer treatments were designed as follows; non-fertilizer (NF), control (CF; chemical fertilizer), DSCB-A1 ($200\;ml{\cdot}m^{-2}$DSCB-A), OSCB-A2 ($250\;ml{\cdot}m^{-2}$DSCB-A), OSCB-U ($250\;ml{\cdot}m^{-2}$DSCB-U) and CF+SCB (CF+$250\;ml{\cdot}m^{-2}$SCB). Every treatment was arranged in a randomized complete block design with three replications. In kentucky bluegrass, turf color index, chlorophyll index, dry weight and nutrient contents were measured. Results were as follows; It was hardly affected by DSCB and SCB application in investigation of chemical properties of soil. Turf color index and chlorophyll index in DSCB and SCB treatments were increased by 1~2% and 19~24% than NF, respectively and similar to CF. As applied with DSCB and SCB, dry weight of DSCB-U and CF+SCB was increased by 36% and 10% than CF, respectively, but similar to that of OSCB-A1 and DSCB-A2. Evaluated with turf quality and growth, DSCB-U was the best in all treatment and OSCB-A1 the most efficient. These results indicated that applications of OSCB and SCB promoted turf quality and growth of kentucky bluegrass or similar to CF, so that they were expected to replace chemical fertilizers.

The Characteristics of Growth and Fruiting in Chestnut Trees by SCB (Slurry Composting and Biofiltration) Liquid Fertilizer (SCB액비처리에 따른 밤나무 생장 및 결실특성)

  • Kwon, Yong-Hee;Lee, Uk;Hwang, Suk-In;Baik, Eul-Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.676-680
    • /
    • 2009
  • The study was conducted to investigate the characteristics of growth and fruiting in chestnut trees by SCB (Slurry Compostion and Biofilteration) liquid fertilizer instead of Chemical fertilizer. The experiment was done between April, 2008 and September, 2009, using seven years old grafting trees 'Tsukuba'. Fertilizer treatment was designed as follows; SCB liquid fertilizer, chemical fertilizer, organic fertilizers and no fertilized. Results were as follows; In the 2nd year, height and basal diameter gain of 8.04% and 25.90% over than the 1st year by SCB liquid fertilizer. The number of burrs per bearing mother branch showed no significant increment by SCB liquid fertilizer but fruiting rate was higher than other treatments. These results indicated that the SCB liquid fertilizer has a value of new eco-friendly fertilizer.

Effect of the Mixed Treatment of Electrolyzed Micronutrients with Nutrient Solution and SCB Slurry on Mineral Content and Growth of Cherry Tomatoes (Lycopersicon esculentum) (양액과 SCB액비 처리에 미량요소 첨가가 방울토마토의 미네랄 함량과 생육에 미치는 영향)

  • Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.385-397
    • /
    • 2012
  • A pot experiment was carried out to examined the effect of electrolyzed micronutrients (Fe, Mn, Zn, Sr, Se, Sn, Co, Ti, and V) solution treatments with nutrient solution and SCB slurry on the mineral content and growth of tomato in cherry tomato (Lycopersicon esculentum). The treatment of nutrient solution (NS)+micronutrients solution (MS) significantly increased the concentrations of Li, Zn, Sr, Se, Ti as compared with that of NS alone in the cherry tomato fruits, and SCB+MS solution treatment significantly increased Li, Zn, Se, Co, Sr, and Ti contents as compared with SCB treatment. The micronutrient contents of MN+SCB+MS treatment were significantly higher in Li, Zn, Se, Co and in Ti than those of SCB and NS treatment, respectively. The growth and yield of cherry tomato fruits was highest with NS treatment. The yield indices of cherry tomato treated with NS+MS treatment and SCB+NS+MS were 97% and 94% of NS treatment. In conclusion, it seems to be possible to produce micronutrient-fortified cherry tomato by the mixed treatment of electrolyzed micronutrients.

Monitoring of Soil Chemical Properties and Pond Water Quality in Golf Courses after Application of SCB Liquid Fertilizer (골프코스에서 SCB저농도액비 살포에 따른 토양화학성과 연못수질의 모니터링)

  • Kim, Young-Sun;Ham, Suon-Kyu;Lim, Hye-Jung
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2012
  • As SCB liquid fertilizer (SCB) produced from or out of livestock manure by slurry composting and biofiltration process was applied in golf course, the effect on soil properties and water quality was little investigated. This study was conducted to evaluate the effect of the SCB liquid fertilizer application on environment by monitoring chemical property of soil and water quality of pond as applied chemical fertilizer (CF) and SCB. SCB application rarely contaminated the soil and pond in golf course and decreased organic matter, CEC and Ca in soil and pH and T-N for water quality of pond. In correlation coefficient between soil property parameters, water quality parameters and water quality items, SCB applied in golf course decreased organic matter and CEC in soil and increased SAR in water quality (P<0.01). Nitrogen applied in golf course with SCB or CF was significantly related to T-N in the soil (P<0.01), but not significantly related to T-N in the pond water. These results showed that SCB application little contaminated soil and pond in golf course, and was expected to control of thatch in soil and algae in pond.