• Title/Summary/Keyword: Rock chip

Search Result 2, Processing Time 0.041 seconds

Characteristic of size distribution of rock chip produced by rock cutting with a pick cutter

  • Jeong, Hoyoung;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.811-822
    • /
    • 2018
  • Chip size distribution can be used to evaluate the cutting efficiency and to characterize the cutting behavior of rock during cutting and fragmentation process. In this study, a series of linear cutting tests was performed to investigate the effect of cutting conditions (specifically cut spacing and penetration depth) on the production and size distribution of rock chips. Linyi sandstone from China was used in the linear cutting tests. After each run of linear cutting machine test, the rock chips were collected and their size distribution was analyzed using a sieving test and image processing. Image processing can rapidly and cost-effectively provide useful information of size distribution. Rosin-Rammer distribution pamameters, the coarseness index and the coefficients of uniformity and curvature were determined by image processing for different cutting conditions. The size of the rock chips was greatest at the optimum cut spacing, and the size distribution parameters were highly correlated with cutter forces and specific energy.

DEM-based numerical study on discharge behavior of EPB-TBM screw conveyor for rock (EPB-TBM 암반굴착시 스크류컨베이어의 배토 거동에 대한 DEM 기반 수치해석적 연구)

  • Lee, Gi-Jun;Kwon, Tae-Hyuk;Kim, Huntae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.127-136
    • /
    • 2019
  • Tunnel construction by TBMs should be supported by the performance of a screw conveyor in order to obtain the optimum penetration rate, so studies related to the screw conveyor performance have been being conducted. Compared to the study on the performance of the screw conveyor for the soil, however, the research on the performance of the screw conveyor for the rock is insufficient. Considering the domestic tunnel sites with more rock layers than soil layers, simulation of discharge of 6 types of rock chips by the screw conveyor was conducted using DEM. Regardless of the shape and volume of the rock chips, the discharge rates of the rock chips by the parallel placed screw conveyor at a speed of 10 RPM in the same rock mass were about 20% (standard deviation: 1.3%) of the maximum volume of discharge rate by the screw conveyor. It is expected that this study can be used as a reference material for screw conveyor design and operation in TBM excavations in rock masses.