• Title, Summary, Keyword: Rice husk biochar

Search Result 4, Processing Time 0.041 seconds

Evaluating germination of lettuce and soluble organic carbon leachability in upland sandy loam soil applied with rice husk and food waste biochar (왕겨 바이오차 및 음식물쓰레기 바이오차가 밭 사양토에서 상추발아 및 수용성 유기탄소 용출에 미치는 영향 평가)

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.369-377
    • /
    • 2014
  • This study was carried out to evaluate the effect of rice husk (RHB) and food waste biochar (FWB) on upland soil with sandy loam texture, in terms of physico-chemical analysis, lettuce seed germination test, and orgainc carbon leaching experiment. RHB and FWB had different physico-chemical properties each other. Carbon to nitrogen ratio (C/N ratio) of RHB was 32, showing two times higher than that of FWB. FWB had high salt and heavy metal content, compared to RHB. This is probably due to different ingredients and production processing between two biochars each other. Results of germination test with Lettuce showed lower germination rate when FWB was applied because of higher salt concentration compared to control and RHB. Organic carbon leaching test using saturated soil column (${\Phi}75{\times}h75mm$) with $10MT\;ha^{-1}$ biochar application rate, showed higher saturated hydraulic conductivity in rice husk biochar treatment column, compared to control and food waste biochar treatment. The highest total organic carbon concentration in column effluent was lower than those in both of rice husk biochar and food waste biochar, whereas the differences was negligible after 9 pore volumes of effluent. Consequently, biochars from byproducts such as rice husk and food waste in sandy loam textured upland soil could enhance a buffer function such as reduction of leaching from soil, but the harmful ingredient to crops such as high salt and heavy metals could limit the agricultural use of biochars.

Behavior Changes of Earthworm from Soils Amended with Biochar - Avoidance and Productivity - (바이오차르 토양 투입에 따른 지렁이의 행동변화 연구 - 회피 및 생산성 변화 -)

  • Kim, You Jin;Yang, Seung Hoon;Kim, Seo Yeon;Yoon, Hong Seok;Yoo, Ga Young
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.277-284
    • /
    • 2014
  • Biochar application to soil is widely known to have effects of climate change mitigation and soil quality improvement. However, effects of biochar on soil ecosystem are not always positive and some biochars are reported to contain toxic materials which might influence soil ecosystem. In this context, this study aims to investigate behavioral changes of earthworms(Eisenia fetida, Eisenia andrei) in response to different application rates of biochar to artificial soil. Treatment included two types of biochars made from rice husk (RH_Char) and wastewater sludge (SL_Char) with 1% and 10% application rates, respectively. Avoidance test revealed that earthworms did not avoid SL_Char treatments at 1% and 10%, while they rather moved to the RH_Char treatments probably due to higher labile carbon content(Hot water extractable carbon) of the RH_Char. The HWC content of RH_Char was 4 times higher than that of the SL_Char. Results of reproduction test showed that the survival rates, number of juveniles and number of cocoons were not influenced by biochar application except for the treatment of SL_Char at 10% rate. In the SL_Char 10% treatment, fatality was approximately 3.3 times as high as the control and the number of cocoons was 1.3 times higher in the same treatment than the control, indicating that earthworms were under environmental stress. The possible explanation for the stress condition was related to higher Cd, Ni, Cr, and As contents in the SL_Char. Overall results imply that biochar application at low rate might not change earthworms' behavior for the short term, while the reproduction behavior might be negatively influenced under the high application rate.

Reclamation of arsenic contaminated soils around mining site using solidification/stabilization combined with revegetation

  • Nejad, Zahra Derakhshan;Kim, Jeong Wook;Jung, Myung Chae
    • Geosciences Journal
    • /
    • v.21 no.3
    • /
    • pp.385-396
    • /
    • 2017
  • Arsenic (As) is a known carcinogen and is one of the most commonly reported contaminants in farmland soils around mining sites. This study aimed to investigate four different soil amendments (rice husk biochar (RHB), maple leaf biochar (MLB), red mud (R.M), and steel slag (S.S)) with respect to the stabilization of arsenic in soil combined with revegetation of two hyperaccumulators (Asteraceae (lettuce) and Brassicaceae (mustard green)). Soil amendments at different application rates (0.5%, 1%, and 2% w/w) and small particle sizes (< $74{\mu}m$) were added to the soil. A different pattern was observed for stabilization of As in treated soils. A meaningful decline in As stabilization was observed with increasing application dosage of MLB, R.M, and S.S, while in case of RHB efficiency was increased. Generally, maximum stabilization efficiency of As was observed following the adding of RHB (2%), MLB (0.5%), R.M (0.5%), and S.S (0.5%), by 90%, 94%, 94%, and 89%, respectively, which was primarily attributed to amendments-induced specific surface area within the structure. For lettuce, As was strongly accumulated by leaves, while As, for mustard green, was extracted much more by its roots. Sequential extraction analysis confirmed high proportions of Fe and Mn oxides and organic fractions of As, before and after planting. Altogether, the establishment of a suitable plant cover on treated soil with amendments showed encouraging results for preventing the dispersion of As through runoff and percolation. Besides, this combined technique, which is aesthetically pleasant, increases biodiversity.

Application Effects of Organic Fertilizer Utilizing Livestock Horn Meal as Domestic Organic Resource on the Growth and Crop Yields (국내산 유기자원 우각을 활용한 유기질비료의 작물 생육 및 수량에 미치는 영향)

  • Jang, Jae-Eun;Lim, Gab-June;Lee, Jin-Gu;Yoon, Seuong-Hwan;Hong, Sang Eun;Shin, Ki Hae;Kang, Chang-Sung;Hong, Sun-Seong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.19-30
    • /
    • 2019
  • Objective of this study was to develop an organic fertilizer utilizing domestic livestock horn meal and to investigate the application effect of rice and eggplant. The possibility of utilization of livestock horn meal as an organic resource to replace imported expeller cake fertilizer was examined. In order to select domestic organic resources with high nitrogen content, 8 kinds of organic matter such as chicken manure, fish meal, soybean meal, sesame meal, perilla meal, blood meal, livestock horn meal, and beer sludge were analyzed and organic resources with high nitrogen content were selected. In addition, the conditions for the production of organic fertilizers that can be used in organic agriculture were established by mixing of the rice husk biochar and the rice bran as the supplements with the raw materials for mixing ratios. The content of total nitrogen (T-N) in the livestock horn meal was 12.0 %, which was the next low in 13.5 % blood meal. The content of total nitrogen was 5.9 ~ 7.9 % in fish meal and oil cakes. Total nitrogen content of non-antibiotic chicken manure for organic farming was 3 % and nitrogen content in beer sludge was 3.5 %. Organic fertilizer was produced by using biochar, rice bran as a main ingredient of non-antibiotic chicken manure, livestock horn meal and beer sludge. Compared to nitrogen content (4.0 to 4.2 %) of imported expeller cake fertilizer (ECF), the nitrogen content of organic fertilizer utilizing domestic livestock horn meal is as high as 7.5 %. The developed organic fertilizer is met as Zn 400 mg/kg, Cu 120 mg/kg the quality of organic agricultural materials such as or less. To investigate the effect of fertilizer application on the crops, prototypes of developed organic fertilizer were used for the experiment under selected conditions. As a result of application the developed organic livestock horn meal fertilizer (LHMF) for cultivation of the rice and eggplant, the application quantity of the developed organic LHMF 100 % was decreased by 40 % compared to that of the mixed expeller cake fertilizer (MECF). The application of LHMF, which refers to the application rate corresponding to the nitrogen fertilization recommended by the soil test, was reduced by 40% compared to the application rate of MECF, but the same results were obtained in crop growth and yield. The selection of a new high concentration nitrogen source utilizing domestic organic resources and the development of organic fertilizer is the starting point of the research for substitution of imported ECF using domestic local resources at the present time that the spread of eco-friendly agriculture is becoming increasingly important. If it is expanded in the future, it is expected to contribute to the stable production of eco-friendly agricultural products.