• Title/Summary/Keyword: Real scale fire test

Search Result 36, Processing Time 0.08 seconds

A Study on Combustion Experiments of Multi Type Air-Conditioner Outdoor Units by Large Scale Calorimeter (라지스케일 칼로리미터에 의한 멀티시스템형 에어컨실외기의 연소실험에 관한 연구)

  • Min, Se-Hong;Bae, Yeon-Jun
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.168-177
    • /
    • 2011
  • The combustion test for real box of AC outdoor unit has been performed in this study in order to estimate the fire hazard in multi-system type of AC outdoor unit which is currently used for commercial use. The result showed that in test, there was explosion inside of AC outdoor unit, and flame erupted and fire spread through upper side grill. And then this fire burnt the combustibles such as wires, electronic control board, heat exchange copper plate and plastics etc inside the unit, refrigerant gas pipe was burst due to fire, and accelerated the explosion and flame eruption to outside while the refrigerant was erupting. It is found in this test that the maximum heat release rate of AC outdoor unit is 5,830 kW, the maximum internal temperature measured with infrared camera and thermocouple is $1,201^{\circ}C$, maximum ambient temperature is $881^{\circ}C$, and flame rose higher than about 5 m. It is concluded that the fire in AC outdoor unit cause fire to combustibles around the unit, and may give big damage by generating the secondary fire. It is expected that the result obtained from the test on the real object may be applied to fire realization of AC outdoor unit and estimation of fire spreading to the combustibles around in the future computer simulation.

Evaluation test of applicability of Compressed Air Foam fire extinguishing system for train fire at rescue station in Subsea tunnel (해저터널 구난역 열차화재시 압축공기포(Compressed Air Foam) 소화설비의 적용성 평가 실험)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Hwi-Seong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.413-418
    • /
    • 2016
  • Recently, a mega project such as Korea-China or Korea-Japan undersea tunnel project has been emerged for detail discussion and the interest in undersea tunnel is on the rise. More severe damage by train fire is expected in undersea tunnel comparing to ground tunnel and thus the study on more efficient fire extinguishing system, besides existing disaster prevention design is underway. To that end, a full-scale fire tests using CAF fire extinguishing system which has been developed by modifying traditional foam fire extinguishing system for fire suppression at rescue station in timely manner were conducted over 7 times. The test was conducted after setting the rescue station in virtual tunnel with a car of KTX. As a result of using compressed air foam directly to the fire source, 30 liter of Heptane combustibles was extinguished within 1 minutes. Applicability of compressed air foam to train fire at rescue station in undersea tunnel was has been proven and further study is considered required while changing the nozzle angle and location so as to achieve quick and easy extinguishing goal, making use of the advantage of CAF, as well as to reduce the fire water and chemicals required.

Fire Suppression Test using the Automatic Monitor System for Double-Deck Tunnel (복층터널 자동 모니터 소화설비를 이용한 화재진압 실험)

  • Park, Jin-Ouk;Yoo, Yong-Ho;Kim, Hwi-Seung;Park, Byoung-Jik;Kim, Yang-Kyun
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.40-46
    • /
    • 2017
  • As one of the solutions to deal with economic loss caused by traffic congestion in metropolitan area, a deep underground road has been planned and implemented at home and abroad. The part of them has been pushed ahead with a double-deck scheme which has an advantage in constructability and cost efficiency comparing to traditional road tunnel. However, the double-deck tunnel has a lower floor height than the general road tunnel due to the special structure used as the upper and lower lines by installing the middle slab on one excavation section. Therefore, it is relatively weak against fire accidents and ventilation problems occurring in tunnels. Thus study to develop the life safety system optimized to a double-deck tunnel has been systematically carried out in order to overcome their weak point. In this study, automatic monitoring fire extinguisher (AMFE) is developed to suppress a fire and prevent its spread at early stage of tunnel fire, conducting the performance test through vehicle fire tests as verification. The tests were conducted with AMFE being 30 m apart from the vehicle and 10 m apart from engine room. As a results, it was confirmed that AMFE enables to suppress a fire and prevent its spread in both cases.

Experimental Study to Estimate the Required Flow of Fire Extinguishing System for Flame Spread Prevention on Composite Panel (복합패널 화재확산 방지를 위한 소화시스템의 소요유량 산정을 위한 실험적 연구)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Hwi-Seong;Kim, Yang-Kyun
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.33-39
    • /
    • 2017
  • Composite panel refers to the particular plywood produced in a way of stacking the different kinds of material in sandwich form and adhering them using adhesives and is widely used as building material for its constructability and cost efficiency. But as the surface is finished with steel plate, fire extinguishing agent cannot reach to the core material because of such steel plate on surface which causes the difficulties in suppressing the fire as well as in fire-fighting activities due to collapse. This study, to deal with such problem, is intended to set the fire pipe in core material to prevent the fire from spreading and in a bid to achieve this using minimized fire water, water supply test device was fabricated to estimate the required water flow of fire extinguisher and consequently, optimal water flow (0.5 L/min) was determined through a full-scale fire test.

Experimental study on the suppression of fire fighting by using Compressed Air Foam system (압축공기포(Compressed Air Foam) 소화시스템을 이용한 구난역 열차 화재 진압에 관한 실험적 연구)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Hwi-Seong;Kim, Yang-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.423-432
    • /
    • 2018
  • Since the Daegu subway fire accident, people's perception of safety has increased, and all materials inside the train have been changed to incombustible materials. However, there is still a lack of development of fire extinguishing systems. Train components are mostly made of steel plates, and therefore it is very difficult to extinguish the train fire by using general fire extinguishing equipment. In this regard, this paper investigated rapid and easy methods of extinguishing the train fire by using compressed air foam systems through full-scale fire tests. To extinguish the fire of train at rescue station, window breakers were used to quickly destroy the train windows, and the compressed air foam system was inserted inside the train. As a result, the train windows were destroyed in 5 seconds, and the 11.88-MW fire was put out in 30 seconds by the compressed air foam discharged from the compressed air foam system inserted inside the train. For the future work, there is a need for further experimental studies to prevent the spread of fire and protect tunnel structures with the use of compressed air foam systems.

Development of remote control automatic fire extinguishing system for fire suppression in double-deck tunnel (복층터널 화재대응을 위한 원격 자동소화 시스템 개발 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong;Park, Sangheon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.167-175
    • /
    • 2019
  • To effectively deal with the fire in tunnel which is mostly the vehicle fire, it's more important to suppress the fire at early stage. In urban tunnel, however, accessibility to the scene of fire by the fire fighter is very limited due to severe traffic congestion which causes the difficulty with firefighting activity in timely manner and such a problem would be further worsened in underground road (double-deck tunnel) which has been increasingly extended and deepened. In preparation for the disaster in Korea, the range of life safety facilities for installation is defined based on category of the extension and fire protection referring to risk hazard index which is determined depending on tunnel length and conditions, and particularly to directly deal with the tunnel fire, fire extinguisher, indoor hydrant and sprinkler are designated as the mandatory facilities depending on category. But such fire extinguishing installations are found inappropriate functionally and technically and thus the measure to improve the system needs to be taken. Particularly in a double-deck tunnel which accommodates the traffic in both directions within a single tunnel of which section is divided by intermediate slab, the facility or the system which functions more rapidly and effectively is more than important. This study, thus, is intended to supplement the problems with existing tunnel life safety system (fire extinguishing) and develop the remote-controlled automatic fire extinguishing system which is optimized for a double-deck tunnel. Consequently, the system considering low floor height and extended length as well as indoor hydrant for a wide range of use have been developed together with the performance verification and the process for commercialization before applying to the tunnel is underway now.