• Title/Summary/Keyword: Rapid Thermal Processing

Search Result 62, Processing Time 0.288 seconds

Thermal Stability Improvement of the Ni Germano-silicide formed by a novel structure Ni/Co/TiN using 2-step RTP for Nano-Scale CMOS Technology

  • Huang Bin-Feng;Oh Soon-Young;Yun Jang-Gn;Kim Yong-Jin;Ji Hee-Hwan;Kim Yong-Goo;Cha Han-Seob;Heo Sang-Bum;Lee Jeong-Gun;Kim Yeong-Cheol;Lee Hi-Deok
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.371-374
    • /
    • 2004
  • In this paper, Ni Germane-silicide formed on undoped $Si_{0.8}Ge_{0.2}$ as well as source/drain dopants doped $Si_{0.8}Ge_{0.2}$ was characterized by the four-point probe for sheet resistance. x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FESEM). Low resistive NiSiGe is formed by one step RTP (Rapid thermal processing) with temperature range at $500{\~}700^{\circ}C$. To enhance the thermal stability of Ni Germane-silicide, Ni/Co/TiN structure with different Co concentration were studied in this work. Low sheet resistance was obtained by Ni/Co/TiN structure with high Co concentration using 2-step RTP and it almost keeps the same low sheet resistance even after furnace annealing at $650^{\circ}C$ for 30 min.

  • PDF

A Study of Nickel Silicide Formed on SOI Substrate with Different Deposited Ni/Co Thicknesses for Nanoscale CMOSFET (나노급 CMOSFET을 위한 SOI 기판에서의 Ni/Co 증착 두께에 따른 Nickel silicide 특성 분석)

  • Jung, Soon-Yen;Yum, Ju-Ho;Jang, Houng-Kuk;Kim, Sun-Yong;Shin, Chang-Woo;Oh, Soon-Young;Yun, Jang-Gn;Kim, Yong-Jin;Lee, Won-Jae;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.619-622
    • /
    • 2005
  • 본 논문에서는 서로 다른 Si 두께 ($T_{Si}$ = 27, 50 nm) 를 갖는 SOI (Silicon On Insulator) 기판 위에 다양한 두께의 Ni/Co를 순차적으로 증착한 후 Bulk-Si과의 비교를 통해 Silicide의 형성 특성에 대하여 분석하였다. 우선 급속 열처리 (RTP, Rapid Thermal Processing) 를 통하여 Silicide를 형성한 후 측정결과 Si두께에 따라 Silicide의 특성이 달라짐을 확인하였다. 두꺼운 두께의 Si-film을 갖는 SOI 기판을 사용한 경우 증착된 금속의 두께에 따라 Bulk-Si와 비슷한 면저항 특성을 보였으나, 얇은 두께의 Si-film을 갖는 SOI기판을 사용한 경우에는 제한된 Si의 공급으로 인한 Silicide의 비저항 증가로 인하여 증착된 금속의 두께에 따라 면저항이 감소하다가 다시 증가하는 'V' 자형 곡선을 나타내었다.

  • PDF

Fabrication of a Cu2ZnSn(S,Se)4 thin film solar cell with 9.24% efficiency from a sputtered metallic precursor by using S and Se pellets

  • Gang, Myeong-Gil;Hong, Chang-U;Yun, Jae-Ho;Gwak, Ji-Hye;An, Seung-Gyu;Mun, Jong-Ha;Kim, Jin-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.86.2-86.2
    • /
    • 2015
  • Cu2ZnSn(S,Se)4 thin film solar cells have been fabricated using sputtered Cu/Sn/Zn metallic precursors on Mo coated sodalime glass substrate without using a toxic H2Se and H2S atmosphere. Cu/Sn/Zn metallic precursors with various thicknesses were prepared using DC magnetron sputtering process at room temperature. As-deposited metallic precursors were sulfo-selenized inside a graphite box containing S and Se pellets using rapid thermal processing furnace at various sulfur to selenium (S/Se) compositional ratio. Thin film solar cells were fabricated after sulfo-selenization process using a 65 nm CdS buffer, a 40 nm intrinsic ZnO, a 400 nm Al doped ZnO, and Al/Ni top metal contact. Effects of sulfur to selenium (S/Se) compositional ratio on the microstructure, crystallinity, electrical properties, and cell efficiencies have been studied using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscope, I-V measurement system, solar simulator, quantum efficiency measurement system, and time resolved photoluminescence spectrometer. Our fabricated Cu2ZnSn(S,Se)4 thin film solar cell shows the best conversion efficiency of 9.24 % (Voc : 454.6 mV, Jsc : 32.14 mA/cm2, FF : 63.29 %, and active area : 0.433 cm2), which is the highest efficiency among Cu2ZnSn(S,Se)4 thin film solar cells prepared using sputter deposited metallic precursors and without using a toxic H2Se gas. Details about other experimental results will be discussed during the presentation.

  • PDF

Design of Controller for Rapid Thermal Process Using Evolutionary Computation Algorithm and Fuzzy Logic (진화 연산 알고리즘과 퍼지 논리를 이용한 고속 열처리 공정기의 제어기 설계)

  • Hwang, Min-Woong;Do, Hyun-Min;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.37-47
    • /
    • 1998
  • This paper proposes a controller design method using the evolutionary computation algorithm and the fuzzy logic to control the wafer temperature in rapid thermal processing. First, we design the feedforward static controller to provide the control powers of the lamps for the given steady state temperature. Second, the feedforward dynamic controller is designed for the additional control powers to achieve a given transient response. These feedforward controllers are implemented by using the fuzzy logic to act as a global nonlinear controller over a wide range of operating points. The parameters of these controllers are optimized by using the evolutionary computation algorithm so that it can be used when the mathematical model is not available. In addition, the feedback error controller is introduced to compensate the feedforward controllers when there exist disturbances and modeling errors. The gain of feedback error controller is also obtained by the evolutionary computation algorithm. Through simulations, we verify the proposed control system can give a satisfactory performance.

  • PDF

Preparation of NaxWO3 (x= 1 and 0.75) Thin Films and Their Electrical Conduction Properties (NaxWO3 (x= 1, 0.75) 박막 제조 및 전기전도 특성)

  • Lee, Seung-Hyun;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.602-610
    • /
    • 2012
  • The powders for the $Na_xWO_3$ (x= 1 and 0.75) sputtering targets were synthesized by the calcination in reductive atmosphere. Near single-phase $NaWO_3$ and single-phase $Na_{0.75}WO_3$ powder targets were prepared. By using the targets, thin films of each composition were deposited by rf magnetron sputtering on the $SiO_2$ (100 nm)/Si substrates and annealed by RTP (rapid thermal processing) for crystallization. In the case of the $NaWO_3$ composition, single-phase $Na_xWO_3$ thin films, where x was believed to be slightly less than 1, were fabricated accompanying the Na-diffusion into the substrates during RTP. However, in the case of the $Na_{0.75}WO_3$ thin film preparation, it was unable to make single-phase thin films. From the phase formation behaviors of both powders and thin films, it was revealed that $Na_xWO_3$ with nonstoichiometric composition of x, which was slightly less than 1, was favorable. The good electrical conduction properties were obtained from the single-phase $Na_xWO_3$ thin films. Their electrical resistivities were as low as $7.5{\times}10^{-4}{\Omega}{\cdot}cm$.

Investigation of Ni/Cu Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용하기 위한 도금법으로 형성환 Ni/Cu 전극에 관한 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.250-253
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. The Ni contact was formed on the front grid pattern by electroless plating followed by anneal ing at $380{\sim}400^{\circ}C$ for $15{\sim}30$ min at $N_{2}$ gas to allow formation of a nickel-silicide in a tube furnace or a rapid thermal processing(RTP) chamber because nickel is transformed to NiSi at $380{\sim}400^{\circ}C$. The Ni plating solution is composed of a mixture of $NiCl_{2}$ as a main nickel source. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. The Ni/Cu contact was found to be well suited for high-efficiency solar cells and was successfully formed by using electroless plating and electroplating, which are more cost effective than vacuum evaporation. In this paper, we investigated low-cost Ni/Cu contact formation by electroless and electroplating for crystalline silicon solar cells.

  • PDF

Studies on Effect of S/Se Ratio on the Properties of Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Films by Sulfo-Selenization of Stacked Precursor Thin Films (열처리 시 S/Se 분말 비율에 따른 Cu2ZnSnSe4 (CZTSSe) 박막의 합성 및 특성 평가)

  • Gang, Myeng Gil;He, Ming Rui;Hong, Chang Woo;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.177-181
    • /
    • 2014
  • $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) absorber thin films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu precursor thin films. The Zn-Sn-Cu precursor thin films were sulfo-selenized inside a graphite box containing S and Se powder using rapid thermal processing furnace at $540^{\circ}C$ in Ar atmosphere with pre-treatment at $300^{\circ}C$. The effect of different S/Se ratio on the structural, compositional, morphological and electrical properties of the CZTSSe thin films were studied using XRD (X-ray diffraction), XRF (X-ray fluorescence analysis), FE-SEM (field-emission scanning electron microscopy), respectively. The XRD, FE-SEM, XRF results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the S/Se composition ratio. In particular, the CZTS thin film solar cells with S/(S+Se)=0.25 shows best conversion efficiency of 4.6% ($V_{oc}$ : 348 mV, $J_{sc}$ : $26.71mA/cm^2$, FF : 50%, and active area : $0.31cm^2$). Further detailed analysis and discussion for effect of S/Se composition ratio on the properties CZTSSe thin films will be discussed.

Low-resistance ohmic contacts to p-$Hg_{0.7}$$Cd_{0.3}$Te (p-$Hg_{0.7}$$Cd_{0.3}$Te에 낮은 저항의 접촉을 얻는 방법에 대한 연구)

  • Kim, Kwan;Chung, Han;Kim, Sung-Chul;Lee, Hee-Chul;Kim, Choong-Ki;Kim, Hong-Kook;Kim, Jae-Mook
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.87-93
    • /
    • 1994
  • Ohmic contacts between Au and p-HgHg_{0.7}Cd_{0.3}Te$ with low specific contact resistance have been obtained. The contact region of the wafer is first pre-heated for 5 seconds in a rapid thermal processing equipment. The temperature reaches a maximum value of about 200$^{\circ}C$ at the end of the 5 seconds. Next, a thin Au film is formed on the contact region by immersing the sample in AuCl$_{3}$ solution. the sample is then post-annealed in the same condition as the pre-heating after Pb/In pad metals are deposited on the electroless Au contacts. The specific contact resistance measured by transmission line model is 5${\times}10^{-3}{\Omega}cm^{2}$ at 80K. RBS and differential Hall measurement data suggest that the above low resistance ohmic contact is ascribed to surface traps and increased gold diffusion rate.

  • PDF

Multicrystalline Silicon Texturing for Large Area CommercialSolar Cell of Low Cost and High Efficiency

  • Dhungel, S.K.;Karunagaran, B.;Kim, Kyung-Hae;Yoo, Jin-Su;SunWoo, H.;Manna, U.;Gangopadhyay, U.;Basu, P.K.;Mangalaraj, D;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.280-284
    • /
    • 2004
  • Multicrystalline silicon wafers were textured in an alkaline bath, basically using sodium hydroxide and in acidic bath, using mainly hydrofluoric acid (HF), nitric acid $(HNO_3)$ and de-ionized water (DIW). Some wafers were also acid polished for the comparative study. Comparison of average reflectance of the samples treated with the new recipe of acidic solution showed average diffuse reflectance less than even 5 percent in the optimized condition. Solar cells were thus fabricated with the samples following the main steps such as phosphorus doping for emitter layer formation, silicon nitride deposition for anti-reflection coating by plasma enhanced chemical vapor deposition (PECVD) and front surface passivation, screen printing metallization, co-firing in rapid thermal processing (RTP) Furnace and laser edge isolation and confirmed >14 % conversion efficiency from the best textured samples. This isotropic texturing approach can be instrumental to achieve high efficiency in mass production using relatively low cost silicon wafers as starting material.

  • PDF

Cost-effective surface passication layers by RTP and PECVD (RTP 와 PECVD을 이용한 저가의 표면 passivation 막들의 특성연구)

  • Lee, Ji-Youn;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.142-145
    • /
    • 2004
  • In this work, we have investigated the application of rapid thermal processing (RTP) and plasma enhanced chemical vapour deposition (PECVD) for surface passivation. Rapid thermal oxidation (RTO) has sufficiently low surface recombination velocities (SRV) $S_{eff}$ in spite of a thin oxides and short process time. The effective lifetime is increasing with an increase of the oxide thickness. In the same oxide thickness, The effective lifetime is independent on the process temperature and time. $S_{eff,max}$ is exponentially decreased with increasing oxide thickness. $S_{eff,max}$ can be reduced to 200 cm/s with only 10 nm oxide thickness. On the other hand, three different types of SiN are reviewed. SiN1 layer has a thickness of about 72 nm and a refractive index of 2.8. Also, The SiN1 has a high passivation quality. The effective lifetime and SRV of 1 $\Omega$ cm Float zone (FZ) silicon deposited with SiN1 is about 800 s and under 10 cm/s, respectively. The SiN2 is optimized for the use as an antireflection layer since a refractive index of 2.3. The SiN3 is almost amorphous silicon caused by less contents of N2 from total process. The effective lifetime on the FZ 1 ${\Omega}cm$ is over 1000 ${\mu}s$.

  • PDF