• Title, Summary, Keyword: Radiation Detector Orientation

Search Result 4, Processing Time 0.112 seconds

A Review of Dose Rate Meters as First Responders to Ionising Radiation

  • Akber, Aqeel Ahmad;Wiggins, Matthew Benfield
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.3
    • /
    • pp.97-102
    • /
    • 2019
  • Background: Dose rate meters are the most widely used, and perhaps one of the most important tools for the measurement of ionising radiation. They are often the first, or only, device available to a user for an instant check of radiation dose at a certain location. Throughout the world, radiation safety practices rely strongly on the output of these dose rate meters. But how well do we know the quality of their output? Materials and Methods: This review is based on the measurements 1,158 commercially available dose rate meters of 116 different makes and models. Expected versus the displayed dose patterns and consistency was checked at various dose rates between $5{\mu}Gy{\cdot}h^{-1}$ and $2mGy{\cdot}h^{-1}$. Samples of these meters were then selected for further investigation and were exposed to radiation sources covering photon energies from 50 keV to 1.5 MeV. The effect of detector orientation on its reading was also investigated. Rather than focusing on the angular response distribution that is often reported by the manufacturer of the device, this study focussed on the design ergonomics i.e. the angles that the operator will realistically use to measure a dose rate. Results and Discussion: This review shows the scope and boundaries of the ionising radiation dose rate estimations that are made using commonly available meters. Observations showed both inter and intra make and model variations, occasional cases of instrument failure, instrument walk away, and erroneous response. Conclusion: The results indicate the significance of selecting and maintaining suitable monitors for specific applications in radiation safety.

A Study on Development of a PIN Semiconductor Detector for Measuring Individual Dose (개인 선량 측정용 PIN 반도체 검출기 개발에 관한 연구)

  • Lee, B.J.;Lee, W.N.;Khang, B.O.;Chang, S.Y.;Rho, S.R.;Chae, H.S.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • The fabrication process and the structure of PIN semiconductor detectors have been designed optimally by simulation for doping concentration and width of p+ layer, impurities re-contribution due to annealing and the current distribution due to guard ring at the sliced edges. The characteristics to radiation response has been also simulated in terms of Monte Carlo Method. The device has been fabricated on n type, $400\;{\Omega}cm$, orientation <100>, Floating-Zone silicon wafer using the simulation results. The leakage current density of $0.7nA/cm^2/100{\mu}m$ is achieved by this process. The good linearity of radiation response to Cs-137 was kept within the exposure ranges between 5 mR/h and 25 R/h. This proposed process could be applied for fabricating a PIN semiconductor detector for measuring individual dose.

Numerical Modeling and Experiment for Single Grid-Based Phase-Contrast X-Ray Imaging

  • Lim, Hyunwoo;Lee, Hunwoo;Cho, Hyosung;Seo, Changwoo;Lee, Sooyeul;Chae, Byunggyu
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.83-91
    • /
    • 2017
  • In this work, we investigated the recently proposed phase-contrast x-ray imaging (PCXI) technique, the so-called single grid-based PCXI, which has great simplicity and minimal requirements on the setup alignment. It allows for imaging of smaller features and variations in the examined sample than conventional attenuation-based x-ray imaging with lower x-ray dose. We performed a systematic simulation using a simulation platform developed by us to investigate the image characteristics. We also performed a preliminary PCXI experiment using an established a table-top setup to demonstrate the performance of the simulation platform. The system consists of an x-ray tube ($50kV_p$, 5 mAs), a focused-linear grid (200-lines/inch), and a flat-panel detector ($48-{\mu}m$ pixel size). According to our results, the simulated contrast of phase images was much enhanced, compared to that of the absorption images. The scattering length scale estimated for a given simulation condition was about 117 nm. It was very similar, at least qualitatively, to the experimental contrast, which demonstrates the performance of the simulation platform. We also found that the level of the phase gradient of oriented structures strongly depended on the orientation of the structure relative to that of linear grids.

Development of a Fast Neutron Detector (속중성자 탐지용 반도체 소자 개발)

  • 이남호;김승호;김양모
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.545-552
    • /
    • 2003
  • When a Si PIN diode is exposed to fast neutrons, it results in displacement damage to the Si lattice structure of the diode. Defects induced from structural dislocation become effective recombination centers for carriers which pass through the base of a PIN diode. Hence, increasing the resistivity of the diode decreases the current for the applied forward voltage. This paper involves the development of a neutron sensor based on the phenomena of the displacement effect damaged by neutron exposure. The neutron effect on the semiconductor was analyzed. Several PIN diode arrays with various thickness and cross-section area of the intrinsic layer(I layer) were fabricated. Under irradiation tests with a neutron beam, the manufactured diodes have a good linearity to neutron dose and show that the increase of thickness of I layer and the decrease of cross-section of PIN diodes improve the sensitivity. Newly developed PIN diodes with thicker I layer and various cross section, were retested and then showed the best neutron sensitivity at the condition that the I layer thickness was similar to a side length. On the basis of two test results, final discrete PIN diodes with a rectangular shape were manufactured and the characteristics as neutron detectors were analyzed through the neutron beam test using on-line electronic dosimetry system. Developed PIN diode shows a good linearity as dosimetry in the range of 0 to 1,000cGy(Tissue) and its neutron sensitivity is 13mV/cGy at constant current of 5mA, that is three times higher than that of commercially available neutron detectors. And the device shows little dependency on the orientation of the neutron beam and a considerable stability in annealing test for a long period.