• Title, Summary, Keyword: ROS

Search Result 2,220, Processing Time 0.038 seconds

Propolis Inhibits UVA-Induced Apoptosis of Human Keratinocyte HaCaT Cells by Scavenging ROS

  • Kim, Han Bit;Yoo, Byung Sun
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.345-351
    • /
    • 2016
  • Propolis is a resinous material collected by honeybees from several plant sources. This research aimed at showing its protective effect against UVA-induced apoptosis of human keratinocyte HaCaT cells. Using Hoechst staining, it was demonstrated that propolis (5 and $10{\mu}g/mL$) significantly inhibited the apoptosis of HaCaT cells induced by UVA-irradiation. Propolis also showed the protective effect against loss of mitochondrial membrane potential induced by UVA-irradiaiton in HaCaT cells. Propolis also inhibited the expression of activated caspase-3 induced by UVA-irradiation. To investigate the role of ROS in UVA-induced apoptosis and protection by propolis, the generation of ROS was determined in cells. The results showed that the generation of ROS was markedly reduced in cells pretreated with propolis. Consequently, propolis protected human keratinocyte HaCaT cells against UVA-induced apoptosis, which might be related to the reduction of ROS generation by UVA-irradiation.

Histamine Release by Hydrochloric Acid is Mediated via Reactive Oxygen Species Generation and Phospholipase D in RBL-2H3 Mast Cells

  • Kim, Chang-Jong;Lee, Seung-Jun;Seo, Moo-Hyun;Cho, Nam-Young;Sohn, Uy-Dong;Lee, Moo-Yeol;Shin, Yong-Kyoo;Sim, Sang-Soo
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.675-680
    • /
    • 2002
  • In order to investigate the underlying mechanism of HCI in oesophagitis, the inflammatory response to HCI was observed in RBL-2H3 mast cells. Rat basophilic leukemia (RBL-2H3) cells were used to measure histamine release, arachidonic acid (AA) release, reactive oxygen species (ROS) and peroxynitrite generation induced by HCI. Exogenous HCl increased the level of histamine release and ROS generation in a dose dependent manner, whereas it decreased the spontaneous release of [$^3$H] M and the spontaneous production of peroxynitrite. Mepacrine (10 $\mu$M), oleyloxyethyl phosphorylcholine (10 $\mu$M) and bromoenol lactone (10 $\mu$M) did not affect both the level of histamine release and ROS generation induced by HCI. U73122 (1 $\mu$M), a specific phospholipase C (PLC) inhibitor did not have any influence on level of histamine release and ROS generation. Propranolol (200 $\mu$M), a phospholipase D (PLD) inhibitor, and neomycin (1 mM), a nonspecific PLC and PLD inhibitor, significantly inhibited both histamine release and ROS generation. Diphenyleneiodonium (10 $\mu$M), a NADPH oxidase inhibitor, and tiron (5 mM), an intracellular ROS scavenger significantly inhibited the HCI-induced histamine release and ROS generation. These findings suggest that the inflammatory responses to HCI is related to histamine release and ROS generation, and that the ROS generation by HCI may be involved in histamine release via the PLD pathway in RBL-2H3 cells.

Overexpression of NtROS2a gene encoding cytosine DNA demethylation enhances drought tolerance in transgenic rice (시토신 탈메틸화 관련 NtROS2a 유전자 도입 형질전환벼의 건조스트레스 내성 증진)

  • Choi, Jang Sun;Lee, In Hye;Cho, Yong-Gu;Jung, Yu Jin;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.376-382
    • /
    • 2016
  • DNA methylation regulations gene expression, thus having pivotal roles in a myriad of physiological and pathological processes. In this study, the morphology and stress tolerance of transgenic rice overexpressing NtROS2a were determined. Transgenic plants exhibited less and shorter lateral shoots. Under various treatments, rice overexpressing NtROS2a showed alleviation of damage symptoms with higher survival rate. After drought and re-watering treatment, transgenic rice seedlings restored their normal growth. However, wild type plants could not be rescued. These findings indicate that overexpression of NtROS2a gene in rice seedlings can increase their tolerance to drought stresses.

Biophoton Emission of MDCK Kidney Cell with ROS(reactive oxygen species) (Biophoton에 의한 생체 세포수준에서의 항산화 작용에 대한 척도)

  • 백구연;천병수;임재관;이승호;소광섭
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.170-173
    • /
    • 2003
  • This study was studies biophoton characteristics of Madin-Darby canine kidney cells under the influence of CsA and each cell type (mock, wt, R55A) by employing a Photomultipliertube. $\textrm{H}_2\textrm{O}_2$ was used for producing reactive oxygen species (ROS) in this measurement. ROS is also generated during oxidative metabolism in living organism. Images from a fluorescence show an increase of photon intensity emitted from the sample on the influence of CsA and each cell type (mock, wt, R55A). It is believed chemiluminescence (CL) occurred by ROS is responsible for the biophoton emission. hence PMT measurement might be considered as a useful tool for studying biochemical characteristics in relation to ROS.

The Long Term Effect of Buchu (Chinese chives) Diet on ROS Formation in the Liver and Skin Tissue of ICR mice (장기간의 부추식이가 ICR 마우스의 간과 피부조직의 활성산소종 생성에 미치는 영향)

  • 문갑순;이민자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.444-449
    • /
    • 2003
  • To investigate the long term effect of buchu (Chinese chives) diet on ROS formation in the liver and stin tissue of ICR mice, one of control, 2% or 5% buchu-added diet was fed to ICR mice for 12 months. Superoxide anion (O2ㆍ), hydrogen peroxide($H_2O$$_2$) and hydroxyl radical (ㆍOH) contents were measured in cytosol, microsome, mitochondria of liver and skin of mice, respectively. Behu diet showed a significant decrease of superoxide anion, hydrogen peroxide and hydroxyl radical contents in liver and skin tissues compared to control diet, and this effect is especially higer at 5% than at 2% buchu diet level. ICR mice showed an age-dependent increase in ROS contents, while the group fed buchu diet decreased its ROS contents significantly and ROS contents of liver appeared to be 2 fold higher than skin. The results of the present study suggest that antioxidative components and sulfur-compounds in buchu diet appear to be responsible for the inhibition of ROS formation in ICR mice.

Inhibitory Phlorotannins from the Edible Brown Alga Ecklonia stolonifera on Total Reactive Oxygen Species (ROS) Generation

  • Kang, Hye-Sook;Chung, Hae-Young;Kim, Ji-Young;Son, Byeng-Wha;Jung, Hyun-Ah;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.194-198
    • /
    • 2004
  • Reactive oxygen species (ROS) play an important role in the pathogenesis of many human degenerative diseases such as cancer, aging, arteriosclerosis, and rheumatism. Much attention has been focused on the development of safe and effective antioxidants. To discover sources of antioxidative activity in marine algae, extracts from 17 kinds of seaweed were screened for their inhibitory effect on total ROS generation in kidney homogenate using 2',7'-dichlorofluorescein diacetate (DCFH-DA). ROS inhibition was seen in three species: UIva pertusa, Symphyocladia latiuscula, and Ecklonia stolonifera. At a final concentration of 25 $\mu\textrm{g}$/mL, U. pertusa inhibited 85.65$\pm$20.28% of total ROS generation, S. latiscula caused 50.63$\pm$0.09% inhibitory, and the Ecklonia species was 44.30$\pm$7.33% inhibition. E. stolonifera OKAMURA (Lam-inariaceae), which belongs to the brown algae, has been further investigated because it is commonly used as a foodstuff in Korea. Five compounds, phloroglucinol (1), eckstolonol (2), eckol (3), phlorofucofuroeckol A (4), and dieckol (5), isolated from the ethyl acetate soluble fraction of the methanolic extrclct of E. stolonifera inhibited total ROS generation.

Effects of Sunghyangchungisan(SHCS) on Oxidant-induced Cell Death in Human Neuroglioma Cells

  • Kim Na-Ri;Kwon Jung-Nam;Kim Young-Kyun
    • The Journal of Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.63-76
    • /
    • 2005
  • Objectives: Reactive oxygen species (ROS) have been implicated in the pathogenesis of a wide range of acute and longterm neurodegenerative diseases. This study was undertaken to examine whether Sunghyangchungisan(SHCS), a well-known prescription in Korean traditional medicine, might have beneficial effects on ROS-induced brain cell injury. Methods: Human neuroglioma cell line A172 and H2O2 were employed as an experimental model cell and oxidant. Results: SHCS effectively protected the cells against both the necrotic and apoptotic cell death induced by H2O2. The effect of SHCS was dose-dependent at concentrations ranging from 0.2 to 5mg/ml. SHCS significantly prevented depletion of cellular ATP and activation of poly (ADP-ribose) polymerase induced by H2O2. It also helped mitochondria to preserve its functional integrity estimated by MTT reduction ability. Furthermore, SHCS significantly prevented H202-induced release of cytochrome c into cytosol. Determination of intracellular ROS showed that SHCS might exert its role as a powerful scavenger of intracellular ROS. Conclusions: The present study provides clear evidence for the beneficial effect of SHCS on ROS-induced neuroglial cell injury. The action of SHCS as an ROS-scavenger might underlie the mechanism.

  • PDF

Mouse Melanoma Cell Migration is Dependent on Production of Reactive Oxygen Species under Normoxia Condition

  • Im, Yun-Sun;Ryu, Yun-Kyoung;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.165-170
    • /
    • 2012
  • Cell migration plays a role in many physiological and pathological processes. Reactive oxygen species (ROS) produced in mammalian cells influence intracellular signaling processes which in turn regulate various biological activities. Here, we investigated whether melanoma cell migration could be controlled by ROS production under normoxia condition. Cell migration was measured by wound healing assay after scratching confluent monolayer of B16F10 mouse melanoma cells. Cell migration was enhanced over 12 h after scratching cells. In addition, we found that ROS production was increased by scratching cells. ERK phosphorylation was also increased by scratching cells but it was decreased by the treatment with ROS scavengers, N-acetylcysteine (NAC). Tumor cell migration was inhibited by the treatment with PD98059, ERK inhibitor, NAC or DPI, well-known ROS scavengers. Tumor cell growth as judged by succinate dehydrogenase activity was inhibited by NAC treatment. When mice were intraperitoneally administered with NAC, the intracellular ROS production was reduced in peripheral blood mononuclear cells. In addition, B16F10 tumor growth was significantly inhibited by in vivo treatment with NAC. Collectively, these findings suggest that tumor cell migration and growth could be controlled by ROS production and its downstream signaling pathways, in vitro and in vivo.

An Implementation of the Control System of the Mobile Robot using ROS (ROS를 이용한 이동 로봇 제어 시스템 구현)

  • Moon, Yong-Seon;Roh, Sang-Hyun;Lim, Seung-Woo;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1713-1718
    • /
    • 2013
  • In this paper we implement collision avoidance using an artificial potential field and remote control of a mobile robot through ROS(Robot Operating System) among the robot's middleware. We also apply dynamic reconfigure to a node of collision avoidance. The main purposes of ROS are sharing and cooperation. In order to make to fit the purpose of ROS, the hardware that frequently is used in the robot such as LRF and joystick, were reused as node that provide in the ROS.

Stress-induced biphasic ethylene and ROS biosynthesis are synergistically interacted in cell damage (스트레스에 의한 식물세포 손상에서 Biphasic Reactive Oxygen Species(ROS)와 Ethylene 생합성의 Synergism 효과)

  • Ji, Na-Ri;Park, Ky-Young
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Although reactive oxygen species (ROS) are inevitable by-products of many redox reactions in eukaryotic cells, they play a crucial role as signaling molecules in many cellular processes for development and defense response to abiotic stresses. The biphasic ROS production which was peaked twice in a first transient phase and a second massive phase was occurred after treatment of abiotic stress such as oxidative stress, high salinity. This biphasic generation of ROS was followed by the biphasic production of stress hormone, ethylene. The mechanism of interactions between ROS and ethylene biosynthesis is studied in tobacco (Nicotiana tabaccum L.) plants under the abiotic stresses. The stress-induced ethylene production was significantly inhibited in RbohD-AS and RbohF-AS, in which antisense expression of NADPH oxidase genes was performed. The accumulation of ROS, which was determined by DAB and DCFH-DA staining, was significantly decreased after abiotic stresses in transgenic plants. The suppression of signaling with ethylene and ROS induced more tolerance in response to abiotic stress. The transgenic plants were more tolerant in MS medium supplemented with salinity stress in contrast with wild-type. Stress-induced cell damage determined by DNA fragmentation was decreased at phase II in those transgenic plants. Therefore, the first burst of ROS is more responsible for making a role as a signaling molecule during stress-induced response. These results suggested that ethylene and ROS act in a positive feedback cycle that results in mutual enhancement of ethylene and ROS production during stress-induced cell death.