• Title, Summary, Keyword: ROS

Search Result 2,229, Processing Time 0.043 seconds

Effect of Vitamin E Against the Cytotoxicity of Reactive Oxygen Species on Vascular Endothelial Cells

  • Kwon O-Yu;Park Seung-Taeck
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.255-259
    • /
    • 2006
  • Reactive oxygen species (ROS) is one of the main pathological factors in endothelial disorder. For example, an atherosclerosis is induced by the dysfunction of vascular endothelial cells. The dysfunction of vascular endothelial cells cascades to secrete intercellular adhesion molecule (ICAM)-l substance by ROS. Therefore, The ROS is regraded as an important factor of the injury of vascular endothelial cells and inducement of atherosclerosis. Oxygen radical scavengers playa key role to prevention of many diseases mediated by oxidative stress of ROS. In this study, the toxic effect of ROS on vascular endothelial cells and the effect of antioxidant, vitamin E on bovine pulmonary vascular endothelial cell line (BPVEC) treated with hydrogen peroxide were examined by the colorimetric assay. ROS decreased remarkably cell viability according to the dose- and time-dependent manners. In protective effect of vitamin E on BPVEC treated with hydrogen peroxide, vitamin E increased remarkably cell viability compared with control after BPVEC were treated with $15{\mu}M$ hydrogen peroxide for 6 hours. From these results, it is suggested that ROS has cytotoxicity on cultured BPVEC and oxygen radical scavenger such as vitamin E is very effective in prevention of oxidative stress-induced cytotoxicity.

  • PDF

INDUCTION OF MITOCHONDRIAL DNA DELETION BY IONIZING RADIATION IN HUMAN LUNG FIBROBLAST IMR-90 CELLS

  • Eom, Hyeon-Soo;Jung, U-Hee;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.49-54
    • /
    • 2009
  • Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with $^{137}Cs$ $\gamma$-rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and $H_2O_2$-treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and $H_2O_2$-treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells.

Cytosolic phospholipase A2, lipoxygenase metabolites, and reactive oxygen species

  • Kim, Cheol-Min;Kim, Joo-Young;Kim, Jae-Hong
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.555-559
    • /
    • 2008
  • Reactive oxygen species (ROS) are generated in mammalian cells via both enzymatic and non-enzymatic mechanisms. Although certain ROS production pathways are required for the performance of specific physiological functions, excessive ROS generation is harmful, and has been implicated in the pathogenesis of a number of diseases. Among the ROS-producing enzymes, NADPH oxidase is widely distributed among mammalian cells, and is a crucial source of ROS for physiological and pathological processes. Reactive oxygen species are also generated by arachidonic acid (AA) metabolites, which are released from membrane phospholipids via the activity of cytosolic phospholipase $A_2$ ($cPLA_2$). In this study, we describe recent studies concerning the generation of ROS by AA metabolites. In particular, we have focused on the manner in which AA metabolism via lipoxygenase (LOX) and LOX metabolites contributes to ROS generation. By elucidating the signaling mechanisms that link LOX and LOX metabolites to ROS, we hope to shed light on the variety of physiological and pathological mechanisms associated with LOX metabolism.

Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells

  • Seo, Min-Jung;Lee, Ok-Hwan;Choi, Hyeon-Son;Lee, Boo-Yong
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.129-135
    • /
    • 2012
  • GPAR{elidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPAR${\gamma}$(peroxisome proliferator-activated receptor-${\gamma}$) and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dismutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

MS-5, a Naphthalene Derivative, Induces the Apoptosis of an Ovarian Cancer Cell CAOV-3 by Interfering with the Reactive Oxygen Species Generation

  • Ma, Eunsook;Jeong, Seon-Ju;Choi, Joon-Seok;Nguyen, Thi Ha;Jeong, Chul-Ho;Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • Reactive oxygen species (ROS) are widely generated in biological processes such as normal metabolism and response to xenobiotic exposure. While ROS can be beneficial or harmful to cells and tissues, generation of ROS by diverse anti-cancer drugs or phytochemicals plays an important role in the induction of apoptosis. We recently identified a derivative of naphthalene, MS-5, that induces apoptosis of an ovarian cell, CAOV-3. Interestingly, MS-5 induced apoptosis by down-regulating the ROS. Cell viability was evaluated by water-soluble tetrazolium salt (WST-1) assay. Apoptosis was evaluated by flow cytometry analysis. Intracellular ROS ($H_2O_2$), mitochondrial superoxide, mitochondrial membrane potential (MMP) and effect on cycle were determined by flow cytometry. Protein expression was assessed by western blotting. The level of ATP was measured using ATP Colorimetric/Fluorometric Assay kit. MS-5 inhibited growth of ovarian cancer cell lines, CAOV-3, in a concentration- and time-dependent manner. MS-5 also induced G1 cell cycle arrest in CAOV-3 cells, while MS-5 decreased intracellular ROS generation. In addition, cells treated with MS-5 showed the decrease in MMP and ATP production. In this study, we found that treatment with MS-5 in CAOV-3 cells induced apoptosis but decreased ROS level. We suspect that MS-5 might interfere with the minimum requirements of ROS for survival. These perturbations appear to be concentration-dependent, suggesting that MS-5 may induce apoptosis by interfering with ROS generation. We propose that MS-5 may be a potent therapeutic agent for inducing apoptosis in ovarian cancer cell through regulation of ROS.

ROLE OF REACTIVE OXYGEN SPECIES IN MALE INFERTILITY

  • Sharma, Rakesh K.;Agarwal, Ashok
    • 대한생식의학회:학술대회논문집
    • /
    • /
    • pp.13-28
    • /
    • 2000
  • Human spermatozoa exhibit a capacity to generate ROS and initiate peroxidation of the unsaturated fatty acids in the sperm plasma membrane, which plays a key role in the etiology of male infertility. The short half-life and limited diffusion of these molecules is consistent with their physiologic role in key biological events such as acrosome reaction and hyperactivation. The intrinsic reactivity of these metabolites in peroxidative damage induced by ROS, particularly $H_2O_2$ and the superoxide anion, has been proposed as a major cause of defective sperm function in cases of male infertility. The number of antioxidants known to attack different stages of peroxidative damage is growing, and it will be of interest to compare alpha-tocopherol and ascorbic acid with these for their therapeutic potential in vitro and in vivo. Both spermatozoa and leukocytes generate ROS, although leukocytes produce much higher levels. The clinical significance of leukocyte presence in semen is controversial. Seminal plasma confers some protection against ROS damage because it contains enzymes that scavenge ROS, such as catalase and superoxide dismutase. A variety of defense mechanisms comprising a number of antioxidants can be employed to reduce or overcome oxidative stress caused by excessive ROS. Determination of male infertility etiology is important, as it will help us develop effective therapies to overcome excessive ROS generation. ROS can have both beneficial and detrimental effects on the spermatozoa and the balancing between the amounts of ROS produced and the amounts scavenged at any moment will determine whether a given sperm function will be promoted or jeopardized. Accurate assessment of ROS levels and, subsequently, OS is Vital, as this will help clinicians both elucidate the fertility status and identify the subgroups of patients that respond or do not respond to these therapeutic strategies. The overt commercial claims of antioxidant benefits and supplements for fertility purposes must be cautiously looked into, until proper multicentered clinical trials are studied. From the current data it appears that no Single adjuvant will be able to enhance the fertilizing capacity of sperm in infertile men, and a combination of the possible strategies that are not toxic at the dosage used would be a feasible approach.

  • PDF

Inhibitory Activity of Flavonoids from Prunus davidiana and Other Flavonoids on Total ROS and Hydroxyl Radical Generation

  • Jung, Hyun-Ah;Jung, Mee-Jung;Kim, Ji-Young;Chung, Hae-Young;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.809-815
    • /
    • 2003
  • Since reactive oxygen species (ROS) and hydroxyl radicals ($^-OH$) play an important role in the pathogenesis of many human degenerative diseases, much attention has focused on the development of safe and effective antioxidants. Preliminary experiments have revealed that the methanol (MeOH) extract of the stem of Prunus davidiana exerts inhibitory/scavenging activities on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals, total ROS and peroxynitrites ($ONOO^-$). In the present study, the antioxidant activities of this MeOH extract and the organic solvent-soluble fractions, dichloromethane (CH$_2$Cl$_2$), ethyl acetate (EtOAc), and n-butanol (n-BuOH), and the water layer of P. davidiana stem were evaluated for the potential to inhibit $^-OH$ and total ROS generation in kidney homogenates using 2',7'-dichlorodihydrofluorescein diacetate (DCHF-DA), and for the potential to scavenge authentic $ONOO^-$. We also evaluated the inhibitory activity of seven flavonoids isolated from P. davidiana stem, kaempferol, kaempferol 7-Ο-$\beta$-D-glucoside, (+)-catechin, dihydrokaempferol, hesperetin 5-Ο-$\beta$-D-glucoside, naringenin and its 7-Ο-$\beta$-D-glucoside, on the total ROS, $^-OH$ and $ONOO^-$ systems. For the further elucidation of the structure-inhibitory activity relationship of flavonoids on total ROS and 'OH generation, we measured the antioxidant activity of sixteen flavonoids available, including three active flavonoids isolated from P. davidiana, on the total ROS and 'OH systems. We found that the inhibitory activity on total ROS generation increases in strength with more numerous hydroxyl groups on their structures. Also, the presence of an ortho-hydroxyl group, whether on the Aring or S-ring, and a 3-hydroxyl group on the C-ring increased the inhibitory activity on both total ROS and $^-OH$ generation.

The Effect of Blueberry on ROS Accumulation and Cell Death in Human Normal Breast Epithelial(MCF10A) and Breast Cancer(MCF7) Cells (블루베리가 정상유선세포와 유방암세포의 ROS 축적과 세포사멸에 미치는 영향)

  • Lee, Se-Na;Kang, Keum-Jee
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.4
    • /
    • pp.416-424
    • /
    • 2008
  • In an effort to elucidate the differential actions of blueberry(BB) in both normal and cancer cells, we utilized human breast cell lines to assess the accumulation of radical oxygen species(ROS) and ROS-associated apoptosis in both human normal breast epithelial(MCF10A) and breast cancer(MCF7) cells. BB extract was added to the cultures at a final concentration of $20{\mu}g/m{\ell}$ for 0(control), 6, 12, and 24 hr intervals. The MCF10A cells evidenced no marked ROS accumulation in the presence of BB, whereas the MCF7 cells evidenced clear ROS accumulation upon BB treatment from 12 hours forward. The number of dying or dead cells did not increase in the BB-treated MCF10A cell groups, whereas that number increased profoundly from 12 hr forward. Furthermore, the expression levels of certain stress-related, and pro- and antiapoptotic gene products evidenced differential responses to BB treatment between the MCF10A and MCF7 cell groups. These results indicate that the components of BB extract differentiate cancer cells by not preventing ROS accumulation within cells and by inducing ROS-associated cell death in cancer cells. However, no marked ROS accumulation or induction of cell death was noted in the normal breast epithelial cells. The fact that BB extract exerted a differential effect on cancer cells opens further directions of research regarding the specific components that exert the differential BB-mediated effects in the selective prevention of normal cells and therapy for cancer tissues in the physiological body.

The role of peroxidases in the pathogenesis of atherosclerosis

  • Park, Jong-Gil;Oh, Goo-Taeg
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.497-505
    • /
    • 2011
  • Reactive oxygen species (ROS), which include superoxide anions and peroxides, induce oxidative stress, contributing to the initiation and progression of cardiovascular diseases involving atherosclerosis. The endogenous and exogenous factors hypercholesterolemia, hyperglycemia, hypertension, and shear stress induce various enzyme systems such as nicotinamide adenine dinucleotide (phosphate) oxidase, xanthine oxidase, and lipoxygenase in vascular and immune cells, which generate ROS. Besides inducing oxidative stress, ROS mediate signaling pathways involved in monocyte adhesion and infiltration, platelet activation, and smooth muscle cell migration. A number of antioxidant enzymes (e.g., superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins) regulate ROS in vascular and immune cells. Atherosclerosis results from a local imbalance between ROS production and these antioxidant enzymes. In this review, we will discuss 1) oxidative stress and atherosclerosis, 2) ROS-dependent atherogenic signaling in endothelial cells, macrophages, and vascular smooth muscle cells, 3) roles of peroxidases in atherosclerosis, and 4) antioxidant drugs and therapeutic perspectives.

Nicotinamide Exerts Antioxidative Effects on Senescent Cells

  • Kwak, Ju Yeon;Ham, Hyun Joo;Kim, Cheol Min;Hwang, Eun Seong
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.229-235
    • /
    • 2015
  • Nicotinamide (NAM) has been shown to suppress reactive oxygen species (ROS) production in primary human fibroblasts, thereby extending their replicative lifespan when added to the medium during long-term cultivation. Based on this finding, NAM is hypothesized to affect cellular senescence progression by keeping ROS accumulation low. In the current study, we asked whether NAM is indeed able to reduce ROS levels and senescence phenotypes in cells undergoing senescence progression and those already in senescence. We employed two different cellular models: MCF-7 cells undergoing senescence progression and human fibroblasts in a state of replicative senescence. In both models, NAM treatment substantially decreased ROS levels. In addition, NAM attenuated the expression of the assessed senescence phenotypes, excluding irreversible growth arrest. N-acetyl cysteine, a potent ROS scavenger, did not have comparable effects in the tested cell types. These data show that NAM has potent antioxidative as well as anti-senescent effects. Moreover, these findings suggest that NAM can reduce cellular deterioration caused by oxidative damage in postmitotic cells in vivo.