• Title, Summary, Keyword: RNAi

Search Result 179, Processing Time 0.032 seconds

RNAi Suppression of RPN12a Decreases the Expression of Type-A ARRs, Negative Regulators of Cytokinin Signaling Pathway, in Arabidopsis

  • Ryu, Moon Young;Cho, Seok Keun;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.375-382
    • /
    • 2009
  • The 26S proteasome is a 2-MDa complex with a central role in protein turn over. The 26S proteasome is comprised of one 20S core particle and two 19S regulatory particles (RPs). The RPN12a protein, a non-ATPase subunit of the 19S RP, was previously shown to be involved in cytokinin signaling in Arabidopsis. To further investigate cellular roles of RPN12a, RNAi transgenic plants of RPN12a were constructed. As expected, the 35S:RNAi-RPN12a plants showed cytokinin signaling defective phenotypes, including abnormal formation of leaves and inflorescences. Furthermore, RNAi knock-down transgenic plants exhibited additional unique phenotypes, including concave and heart-shape cotyledons, triple cotyledons, irregular and clustered guard cells, and defects in phyllotaxy, all of which are typical for defective cytokinin signaling. We next examined the mRNA level of cytokinin signaling components, including type-A ARRs, type-B ARRs, and CRFs. The expression of type-A ARRs, encoding negative regulators of cytokinin signaling, was markedly reduced in 35S:RNAi-RPN12a transgenic plants relative to that in wild type plants, while type-B ARRs and CRFs were unaffected. Our results also indicate that in vivo stability of the ARR5 protein, a negative regulator of cytokinin signaling, is mediated by the 26S proteasome complex. These results suggest that RPN12a participates in feedback inhibitory mechanism of cytokinin signaling through modulation of the abundance of ARR5 protein in Arabidopsis.

New Therapeutic Schedule for Prostatic Cancer-3 Cells with ET-1 RNAi and Endostar

  • Zhang, Hao-Jie;Qian, Wei-Qing;Chen, Ran;Sun, Zhong-Quan;Song, Jian-Da;Sheng, Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10079-10083
    • /
    • 2015
  • Background: Endothelin-1 and Endostar are both significant for the progression, proliferation, metastasis and invasion of cancer. In this paper, we studied the effect of ET-1 RNAi and Endostar in PC-3 prostatic cancer cells. Materials and Methods: The lentiviral vector was used in the establishment of ET-1 knockdown PC-3 cells. Progression and apoptosis were assessed by CKK-8 and flow cytometry, respectively. Transwell assay was used to estimate invasion and signaling pathways were studied by Western blotting. Results: ET-1 mRNA and protein in ET-1 knockdown PC-3 cells were reduced to 26.4% and 22.4% compared with control group, respectively. ET-1 RNAi and Endostar both were effective for the suppression of progression and invasion of PC-3 cells. From Western blotting results, the effects of ET-1 regulation and Endostar on PC-3 cells were at least related to some signaling pathways involving PI3K/Akt/Caspase-3, Erk1/2/Bcl-2/Caspase-3 and MMPs (MMP-2 and MMP-9). Furthermore, combined treatment of ET-1RNAi and Endostar was found to be more effective than single treatment. Conclusions: Both ET-1 RNAi and Endostar can inhibit the progression and invasion of PC-3 cells, but combined treatment might be a better therapeutic schedule.

Variation of Amylose Content Using dsRNAi Vector by Targeting 3'-UTR Region of GBSSI Gene in Rice (GBSSI 유전자 3'UTR 영역의 발현 억제 dsRNAi 벡터를 이용한 아밀로스함량 조절 벼 개발)

  • Park, Hyang-Mi;Choi, Man-Soo;Chun, Areum;Lee, Jeung-Heui;Kim, Myeong-Ki;Kim, Yeon-Gyu;Shin, Dong-Bum;Lee, Jang-Yong;Kim, Yul-Ho
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.515-524
    • /
    • 2010
  • The amylose content of starch is a major factor in the texture of cooked cereal grains. Therefore, down-regulation of amylose synthesis is one of the alternative method to improve eating quality of rice. We developed transgenic rice plants designed to suppress granule-bound starch synthase I(GBSSI) gene using RNA interference(RNAi) technology. Transgenic plants with RNAi vector containing the 3'-UTR region of GBSSI showed a lower amylose content in rice endosperm than that of wild-type. The range of amylose content was 5.9~9.0% in the transgenic plants, whereas that of wild-type was 17.7~18.0%. Transgenic rices showed the decrease of short chain and the increase of long chain by analyzing chain length distribution of amylopectin in the endosperm. In the SEM micrographs, we found that compound starch granules in whole grains of the wild-type rice were readily split during fracturing, while the starch granules in RNAi-transgenic lines showed small voluminous, non-angular rounded bodies.

Characterization and Functional Analysis of Obox4 during Oocyte Maturation by RNA Interference (생쥐의 난소와 난자에서의 Obox4의 동정과 RNAi를 이용한 기능연구)

  • Lee, Hyun-Seo;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.4
    • /
    • pp.293-303
    • /
    • 2007
  • Objective: Previously, we identified differentially expressed genes between GV and MII stage mouse oocytes using ACP technology. When we study one of GV selective genes, Obox family, we found Obox4 mRNA expression in ovaries that has been reported as expressed exclusively in testis. Therefore, this study was conducted for characterization and functional analysis for Obox4. Methods: Expression of Obox4 mRNA was examined in gonads and oocytes by RT-PCR. To determine the role of Obox4 in oocyte maturation, Obox4 dsRNA was microinjected into the cytoplasm of GV oocytes followed by 16 h of incubation in the plain medium or by 24 h of incubation in the medium containing IBMX. After RNAi, phenotypes and maturation rates were observed, change in mRNA expression was evaluated, and chromosomal status was confirmed by orcein staining. Results: Obox4 has minimal expression in the ovary compared to that of the other family members. When oocytes were cultured for 16 h in M16 medium after RNAi, maturation rate was not changed significantly, compared with that of non-injected or buffer-injected control oocytes. Surprisingly, however, when oocytes were cultured for 24 h in M16 containing IBMX, in which oocytes were supposed to arrest at GV stage, Obox4 RNAi oocytes were advanced to MI and MII. Spindle structure was disappeared and the chromosomes were condensed in the oocytes after Obox4 RNAi. Conclusions: This is the first report on the expression of Obox4 in the ovary and oocytes. Results of the study suggest that Obox4 plays a crucial role in spindle formation and chromosome segregation during meiosis in oocytes. In addition, Obox4 may play an important role in cAMP-dependent signal cascades of GV-arrest in mouse oocytes.

Lentivirus-mediated silencing of the PTC1 and PTC2 genes promotes recovery from spinal cord injury by activating the Hedgehog signaling pathway in a rat model

  • Zhang, Ya-Dong;Zhu, Zhong-Sheng;Zhang, Dong;Zhang, Zhen;Ma, Bin;Zhao, Shi-Chang;Xue, Feng
    • Experimental and Molecular Medicine
    • /
    • v.49 no.12
    • /
    • pp.7.1-7.12
    • /
    • 2017
  • This study aimed to investigate the effect of Patched-1 (PTC1) and PTC2 silencing in a rat model, on Hedgehog (Hh) pathwaymediated recovery from spinal cord injury (SCI). An analytical emphasis on the relationship between the sonic hedgehog (Shh) pathway and nerve regeneration was explored. A total of 126 rats were divided into normal, sham, SCI, negative control (NC), PTC1-RNAi, PTC2-RNAi and PTC1/PTC2-RNAi groups. The Basso, Beattie and Bresnahan (BBB) scale was employed to assess hind limb motor function. Quantitative real-time polymerase chain reaction and western blotting were performed to examine the mRNA and protein levels of PTC1, PTC2, Shh, glioma-associated oncogene homolog 1 (Gli-1), Smo and Nestin. Tissue morphology was analyzed using immunohistochemistry, and immunofluorescent staining was conducted to detect neurofilament protein 200 (NF-200) and glial fibrillary acidic protein (GFAP). The PTC1/PTC2-RNAi group displayed higher BBB scores than the SCI and NC groups. Shh, Gli-1, Smo and Nestin expression levels were elevated in the PTC1/PTC2-RNAi group. PTC1 and PTC2 mRNA and protein expression was lower in the PTC1/PTC2-RNAi group than in the normal, sham and SCI groups. Among the seven groups, the PTC1/PTC2-RNAi group had the largest positive area of NF-200 staining, whereas the SCI group exhibited a larger GFAP-positive area than both the normal and the sham groups. The Shh pathway may provide new insights into therapeutic indications and regenerative recovery tools for the treatment of SCI. Activation of the Hh signaling pathway by silencing PTC1 and PTC2 may reduce inflammation and may ultimately promote SCI recovery.

Gene silencing assessment for genes from recalcitrant or poorly studied plant species

  • Kamoi, Takahiro;Eady, Colin Charles;Imai, Shinsuke
    • Plant Biotechnology Reports
    • /
    • v.2 no.3
    • /
    • pp.199-206
    • /
    • 2008
  • We have developed an efficient system of assessing the ability of a gene silencing cassette to silence transcripts from recalcitrant or poorly studied plant species by using a model plant as a host for the gene of interest. Tobacco plants transgenic for Lachrymatory Factor Synthase (LFS) enzyme activity from onion were first produced by introducing a CaMV 35S-onion-lfs gene construct. These plants were then subjected to a second transformation with an RNAi construct directed against the lfs gene sequence. LFS enzyme activity assay showed that the transgenic plants, containing both the lfs gene and the RNAi construct, had significantly reduced LFS activity. This observation was supported by Western analysis for the LFS protein and further validated by quantitative RT-PCR analysis that demonstrated a significant reduction in the lfs transcript level in the dual transformants. In this work, we have demonstrated that the RNAi construct is a suitable candidate for the development of a non-lachrymatory onion. Our model plant RNAi system has wide-reaching applications for assessment and targeting of plant secondary pathway genes, from poorly studied or recalcitrant plant species, that are important in the pharmacological, food and process industries.

Dual-Target Gene Silencing by Using Long, Synthetic siRNA Duplexes without Triggering Antiviral Responses

  • Chang, Chan Il;Kang, Hye Suk;Ban, Changill;Kim, Soyoun;Lee, Dong-ki
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.689-695
    • /
    • 2009
  • Chemically synthesized small interfering RNAs (siRNAs) can specifically knock-down expression of target genes via RNA interference (RNAi) pathway. To date, the length of synthetic siRNA duplex has been strictly maintained less than 30 bp, because an early study suggested that double-stranded RNAs (dsRNAs) longer than 30 bp could not trigger specific gene silencing due to the induction of non-specific antiviral interferon responses. Contrary to the current belief, here we show that synthetic dsRNA as long as 38 bp can result in specific target gene silencing without non-specific antiviral responses. Using this longer duplex structure, we have generated dsRNAs, which can simultaneously knock-down expression of two target genes (termed as dual-target siRNAs or dsiRNAs). Our results thus demonstrate the structural flexibility of gene silencing siRNAs, and provide a starting point to construct multifunctional RNA structures. The dsiRNAs could be utilized to develop a novel therapeutic gene silencing strategy against diseases with multiple gene alternations such as viral infection and cancer.

Change of population density of tobacco whitefly (Bemisia tabaci, Aleyrodidae, Hemiptera) by RNAi (RNAi에 의한 담배가루이(Bemisia tabaci, 가루이과, 노린재목)의 개체군 밀도변화)

  • Ko, Na-Yeon;Youn, Young-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Ninety genes randomly selected from tobacco whitefly (Bemisia tabaci) cDNA library was studied for selecting target gene in order to control of tobacco whitefly using TRV-VIGS vector (tobacco rattle virus-virus induced gene silencing vector) with RNAi. First of all, the occurrence of B. tabaci adult according to agro-infiltration of TRV was no significant difference. And that of TRV inserted tobacco whitefly cDNA showed a significant difference in each sample. P CV and N CV sample were more than 80% could be confirmed in 5 samples, for example, wh11, wh36, wh46, wh50 and wh71. Lastly, the occurrence of nymph and egg also showed a significant difference in each sample. That could be confirmed in 11 samples, for example, wh01, wh09, wh10, wh15, wh16, wh23, wh24, wh48, wh64 and wh66. In case of wh46, wh50 and wh71 sample could be confirmed that occurrence of B. tabaci adult was many, but occurrence of B. tabaci nymph and egg was a little. So sample showed a physioecological good effect to control of whitefly need to be investigated variation of gene expression in whitefly body using qRT-PCR through individual test.

Suppression of Rice Stripe Virus Replication in Laodelphax striatellus Using Vector Insect-Derived Double-Stranded RNAs

  • Fang, Ying;Choi, Jae Young;Park, Dong Hwan;Park, Min Gu;Kim, Jun Young;Wang, Minghui;Kim, Hyun Ji;Kim, Woo Jin;Je, Yeon Ho
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.280-288
    • /
    • 2020
  • RNA interference (RNAi) has attracted attention as a promising approach to control plant viruses in their insect vectors. In the present study, to suppress replication of the rice stripe virus (RSV) in its vector, Laodelphax striatellus, using RNAi, dsRNAs against L. striatellus genes that are strongly upregulated upon RSV infection were delivered through a rice leaf-mediated method. RNAi-based silencing of peroxiredoxin, cathepsin B, and cytochrome P450 resulted in significant down regulation of the NS3 gene of RSV, achieving a transcriptional reduction greater than 73.6% at a concentration of 100 ng/μl and, possibly compromising viral replication. L. striatellus genes might play crucial roles in the transmission of RSV; transcriptional silencing of these genes could suppress viral replication in L. striatellus. These results suggest effective RNAi-based approaches for controlling RSV and provide insight into RSV-L. striatellus interactions.

Cosuppression and RNAi induced by Arabidopsis ortholog gene sequences in tobacco

  • Oka, Shin-Ichiro;Midorikawa, Kaoru;Kodama, Hiroaki
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.185-192
    • /
    • 2010
  • The Arabidopsis ${\omega}$-3 fatty acid desaturase (AtFAD7) catalyzes the synthesis of trienoic fatty acids (TA). A transgenic tobacco line, T15, was produced by a sense AtFAD7 construct and showed a cosuppression-like phenotype, namely extremely low TA levels. The sequence similarity between AtFAD7 and a tobacco ortholog gene, NtFAD7, was moderate (about 69%) in the coding sequences. AtFAD7 siRNAs accumulated at a high level, and both AtFAD7 and NtFAD7 mRNAs are degraded in T15 plants. The low-TA phenotype in T15 was dependent on a tobacco RNA-dependent RNA polymerase6 (NtRDR6). We also produced tobacco RNAi plants targeting AtFAD7 gene sequences. The AtFAD7 siRNA level was trace, which was associated with a slight reduction in leaf TA level. Unexpectedly, this RNAi plant showed an increased NtFAD7 transcript level. To investigate the effect of translational inhibition on stability of the NtFAD7 mRNAs, leaves of the wild-type tobacco plants were treated with a translational inhibitor, cycloheximide. The level of NtFAD7 mRNAs significantly increased after cycloheximde treatment. These results suggest that the translational inhibition by low levels of AtFAD7 siRNAs or by cycloheximide increased stability of NtFAD7 mRNA. The degree of silencing by an RNAi construct targeting the AtFAD7 gene was increased by co-existence of the AtFAD7 transgene, where NtRDR6-dependent amplification of siRNAs occurred. These results indicate that NtRDR6 can emphasize silencing effects in both cosuppression and RNAi.