• Title, Summary, Keyword: RAV1

Search Result 7, Processing Time 0.075 seconds

RAV1 Negatively Regulates Seed Development by Directly Repressing MINI3 and IKU2 in Arabidopsis

  • Shin, Hyun-young;Nam, Kyoung Hee
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1072-1080
    • /
    • 2018
  • A plant-specific B3 domain and AP2 domain-containing transcription factor, RAV1 acts as a negative regulator of growth in many plant species and its transcription was down-regulated by BR and ABA. In this study, we found that RAV1-overexpressing transgenic plants showed abnormally developed ovules, resulting in reduced seed size, weight, and number in a silique. Interestingly, the endogenous expression of RAV1 fluctuated during seed development; it remained low during the early stage of seed development and sharply increased in the seed maturation stage. In plants, seed development is a complex process that requires coordinated growth of the embryo, endosperm, and maternal integuments. Among many genes that are associated with endosperm proliferation and embryo development, three genes consisting of SHB1, MINI3, and IKU2 form a small unit positively regulating this process, and their expression was regulated by BR and ABA. Using the floral stage-specific RNAs, we found that the expression of MINI3 and IKU2, the two downstream genes of the SHB1-MINI3-IKU2 cascade in the seed development pathway, were particularly reduced in the RAV1-overexpressing transgenic plants. We further determined that RAV1 directly binds to the promoter of MINI3 and IKU2, resulting in their repression. Direct treatment with brassinolide (BL) improved seed development of RAV1-overexpressing plants, but treatment with ABA severely worsened it. Overall, these results suggest that RAV1 is an additional negative player in the early stages of seed development, during which ABA and BR signaling are coordinated.

A Structural View of Xenophagy, a Battle between Host and Microbes

  • Kwon, Do Hoon;Song, Hyun Kyu
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • The cytoplasm in mammalian cells is a battlefield between the host and invading microbes. Both the living organisms have evolved unique strategies for their survival. The host utilizes a specialized autophagy system, xenophagy, for the clearance of invading pathogens, whereas bacteria secrete proteins to defend and escape from the host xenophagy. Several molecules have been identified and their structural investigation has enabled the comprehension of these mechanisms at the molecular level. In this review, we focus on one example of host autophagy and the other of bacterial defense: the autophagy receptor, NDP52, in conjunction with the sugar receptor, galectin-8, plays a critical role in targeting the autophagy machinery against Salmonella; and the cysteine protease, RavZ secreted by Legionella pneumophila cleaves the LC3-PE on the phagophore membrane. The structure-function relationships of these two examples and the directions of future research will be discussed.

Genome-Wide Identification and Classification of the AP2/EREBP Gene Family in the Cucurbitaceae Species

  • Lee, Sang-Choon;Lee, Won-Kyung;Ali, Asjad;Kumar, Manu;Yang, Tae-Jin;Song, Kihwan
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2017
  • AP2/EREBP gene family consists of transcription factor genes with a conserved AP2 DNA-binding domain and is involved in various biological processes. AP2/EREBP gene families were identified through genome-wide searches in five Cucurbitaceae species including cucumber, wild cucumber, melon, watermelon, and bitter gourd, which consisted of more than 100 genes in each of the five species. The gene families were further divided into five groups including four subfamilies (ERF, DREB, AP2 and RAV) and a soloist group. Among the subfamilies, DREB subfamily which is known to be related to abiotic stress response was more analyzed and a total of 25 genes were identified as Cucurbitaceae homologues of Arabidopsis CBF/DREB1 genes which are important for abiotic stress-response and tolerance. In silico expression profiling using RNA-Seq data revealed diverse expression patterns of cucumber AP2/EREBP genes. AP2/EREBP gene families identified in this study will be valuable for understanding the stress response mechanism as well as facilitating molecular breeding in Cucurbitaceae crops.

3D Medical Image Segmentation Using Region-Growing Based Tracking (영역 확장 기반 추적을 이용한 3차원 의료 영상 분할 기법)

  • Ko S.;Yi J.;Lim J.;Ra J. B.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.239-246
    • /
    • 2000
  • In this paper. we propose a semi-automatic segmentation algorithm to extract organ in 3D medical data by using a manually segmentation result in a sing1e slice. Generally region glowing based tracking method consists of 3 steps object projection. seed extraction and boundary decision by region growing. But because the boundary between organs in medical data is vague, improper seeds make the boundary dig into the organ or extend to the false region. In the proposed algorithm seeds are carefully extracted to find suitable boundaries between organs after region growing. And the jagged boundary at low gradient region after region growing is corrected by post-processing using Fourier descriptor. Also two-path tracking make it possible to catch up newly appeared areas. The proposed algorithm provides satisfactory results in segmenting 1 mm distance kidneys from X-rav CT body image set of 82 slices.

  • PDF

Transcriptome profiling of rubber tree (Hevea brasiliensis) discovers candidate regulators of the cold stress response

  • Gong, Xiao-Xiao;Yan, Bing-Yu;Hu, Jin;Yang, Cui-Ping;Li, Yi-Jian;Liu, Jin-Ping;Liao, Wen-Bin
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1181-1197
    • /
    • 2018
  • Tropical plant rubber tree (Hevea brasiliensis) is the sole source of commercial natural rubber and low-temperature stress is the most important limiting factor for its cultivation. To characterize the gene expression profiles of H. brasiliensis under the cold stress and discover the key cold stress-induced genes. Three cDNA libraries, CT (control), LT2 (cold treatment at $4^{\circ}C$ for 2 h) and LT24 (cold treatment at $4^{\circ}C$ for 24 h) were constructed for RNA sequencing (RNA-Seq) and gene expression profiling. Quantitative real time PCR (qRT-PCR) was conducted to validate the RNA-Seq and gene differentially expression results. A total of 1457 and 2328 differentially expressed genes (DEGs) in LT2 and LT24 compared with CT were respectively detected. Most significantly enriched KEGG pathways included flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, cutin, suberine and wax biosynthesis, Pentose and glucuronate interconversions, phenylalanine metabolism and starch and sucrose metabolism. A total of 239 transcription factors (TFs) were differentially expressed following 2 h or/and 24 h of cold treatment. Cold-response transcription factor families included ARR-B, B3, BES1, bHLH, C2H, CO-like, Dof, ERF, FAR1, G2-like, GRAS, GRF, HD-ZIP, HSF, LBD, MIKC-MADS, M-type MADS, MYB, MYB-related, NAC, RAV, SRS, TALE, TCP, Trihelix, WOX, WRKY, YABBY and ZF-HD. The genome-wide transcriptional response of rubber tree to the cold treatments were determined and a large number of DEGs were characterized including 239 transcription factors, providing important clues for further elucidation of the mechanisms of cold stress responses in rubber tree.

Influence of Sustaining Frequency on the luminous Efficiency in AC-PDP (교류형 플라즈마 디스플레이에 있어서 유지방전 주파수에 따른 발광 효율에 미치는 영향)

  • 정의선;김대일
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.6
    • /
    • pp.1-5
    • /
    • 2000
  • Recently alternating-current Plasma Display Panel(AC-PDP) is in the spotlight as a digital television and high definition television. The panel structure widely adapted in commercial AC-PDP is three electrodes surface discharge type. At present time, the luminous efficiency is around 1lm/W, it should be a key factor for the commercialization. For the high luminous efficiency, the development of panel structure is necessary. At a given panel structure, a driving method should be optimized to get a sufficient luminous efficiency. The display image of AC-PDP could be realized by the repeated light emission from the discharge. Because most of discharge power is consumed in the sustaining period, the optimization of sustaining waveform is very important for the high luminous efficiency. ADS (Address and Display period Separated) driving method is commonly used. The average driving frequency of ADS driving method is ranged by several tens kilo of [kHz], however the actual frequency of sustaining period is in range of 100[kHz] to 200[kHz]. Based on this study, when the phosphor emits the visible light, it has a decay time of few milliseconds due to the material transfer to the phosphor to emit the visible light. Consequently the luminous efficiency decreases in proportion to the driving frequency. It is found that the luminous efficiency could be significantly improved by the low frequency sustaining driving method.

  • PDF

Functional Disturbances Through the Retinal Pigment Reaction of the Automatic Nervous System of Tadpoles Developed under Various Visible Rays (망막반응으로 본 각종파장가시광선조사하에서 발육한 과두(올챙이)의 식물신경계기능변조에 관하여)

  • 주인호
    • The Korean Journal of Zoology
    • /
    • v.1 no.2
    • /
    • pp.17-24
    • /
    • 1958
  • Since Kesser first described in 1934 the functional change of the autonomic nervous system caused by certain visible rays many researchers have unanimously approved that animals flashed with a red visible ray develop parasympathicotony while those flashed with a blue visible ray develop sympathicotony. On the other hand through studies made by our colleagues it is now well known that the inner-movement of the retinal pigments of frogs is stimulated in sympathicotony and is in reverse inhibited in parasimpathicotony. It is almost evident that the mechanism by which the inner-movement of the retinal pigments is due to sympathicotony derived from the excessive secretion of adrenalin. In addition , through may recent experiments on the pharmacological action of various medicines on the retinal pigments reaction of tadpoles , ranging from the excessive secretion of adrenalin. In addition , through my recent experiments on the pharmacologtical action of various medicines on the retinal pigments reaction of tadploes, raging from every developmental stage , Ifound that the movement of the retinal pigments by adrenalin is predominant in the earlier developmental stages of taopoles around 11 mm of body length, whereas other medicines fail to give any responce to the retinal pigments in such an earlier stage. When tadpoles grown to body length of 15-16m the retinal pigments move to the complete light position while kept in adrenalin solution. Based on these facts it might be well to consider that if tadpoles were grown under the visible rays for a given period, they might show a functional change of the autonomic nervous system and thereby cause of certain change in the physciological phases of the retinal reaction. Experiments were undertaken to find this matter and also to discover the simultaneous effects of the visible radiations on the developmental process of tadpoles. The results summarized as follows ; 1. The longest wave of visible rav has an effective reaction on the growth of body length of taopoles, while the shortest wave of visible ray causes the same for the metamorphoric differentiation of tadpoles. 2. When keeping two groups of tadpoles the first group of 15 mm body length grown for the period of one week and the latter group of 20 mm body length grown for two weeks under the various visible rays. swimming in adrenalin solution, the inner-movement of the retinal pigment occurs in both groups. The movement of pigments of the first group is accelerated in a sequence of blue ray \ulcorner green ray > brown ray> red ray, and that of the latter group is also accelerated in a sequence of blue ray>green ray > brown ray and red ray. 3. When keeping tow groups of tadpoles, the first group of 20 mm body length grown for the period of two weeks, the latter group of 25 m body length grown for three wheeks, under the various visible rays in sunlight, the inner-movement of the retinal pigments occurs in both groups. The movement of pigments of the first group is accelerated in a sequence of blue ray> green ray>brown ray and red ray, and that of the latter group is also accelerated in a sequence of blue ray > brow ray>red ray. 4. In order words, there facts manifest that tadpoles grown under the various visible rays reveal functional disturbances of the autonomic nervous system, at the time of 15 mm body length by adrenalin solution, which is a unique indicator illustrating the status of sympathicotony, and at the time of 20 mm body length by sunlight. This means that the longest visible ray cause sympathicotony, while the shortest visible ray causes parasympathicotony.

  • PDF