• Title, Summary, Keyword: QTL and Inbred Parental Lines

Search Result 2, Processing Time 0.024 seconds

Association of Marker Loci and QTL from Crosses of Inbred Parental Lines

  • Lee, Gi-Woong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.772-779
    • /
    • 2005
  • The objectives of this study were to examine problems with using F$_1$ data by simulation, association of marker loci and QTL from crosses of inbred parental lines and to enumerate the preliminary characterization of genetic superiority within inbred parental lines. In this study, the association between markers for QTL used as covariates and estimates of variance components due to effects of lines was investigated through computer simulation. The effects of size of population to develop inbred lines and initial frequencies and magnitudes of effects of QTL were also considered. Results show that estimates of variance components due to line effects are influenced by including marker information as covariates in the model for analysis. Estimates of line variance were increased by adding marker information into the analysis, because negative covariances between effects associated with the markers and the remaining effects associated with other loci existed. However, the fit of the model as indicated by the log likelihood improved by adding more markers as covariates into the analysis. Marker assisted selection will be beneficial when markers explain unexplained genetic difference during selection procedure. Markers can be used to identify QTLs affecting traits, and to select for favorable QTL alleles. To efficiently use genetic markers, location of markers at the genome must be identified. The estimates of variance due to effects of with and without marker information used as covariates in the analysis were investigated. The estimates of line variances were always increased when markers were included as covariates for the model because a negative covariance were existed.

Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

  • Lim, Jung-Hyun;Yang, Hyun-Jung;Jung, Ki-Hong;Yoo, Soo-Cheul;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.149-160
    • /
    • 2014
  • Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 $F_7$ recombinant inbred lines (RILs) from a cross of japonica rice line 'SNU-SG1' and indica rice line 'Milyang23'. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.