• Title/Summary/Keyword: Pseudomonas sp

Search Result 557, Processing Time 0.112 seconds

Improvement of 4-chlorobiphenyl degradation bya recombinant strain, pseudomonas sp. DJ12-C

  • Kim, Ji-Young;Kim, Young-Chang;You, Lim-Jai;Lee, Ki-Sung;Ok, Ka-Jong;Hee, Min-Kyung;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 1997
  • Pseudomonas sp. P20 and Pseudomonas sp. DJ-12 isolated from the polluted environment are capable of degrading biphenyl and 4-chlorobiphenyl (4CB) to produce benzoic acid and 4-chlorobenzoic acid (4CBA) respectively, by pcbABCD-encoded enzymes. 4CBA can be further degraded by Pseudomonas sp. DJ-12, but not by Pseudomonas sp P20. However, the meta-cleavage activities of 2, 3-dihydroxybiphenyl (2, 3-DHBP) and 4-chloro-2, 3-DHBP dioxygenases (2, 3-DHBD) encoded by pcbC in Pseudomonas sp. P20 were stronger than Pseudomonas sp. DJ-12. In this study, the pcbC gene encoding 2, 3-DHBD was cloned from the genomic DNA of Pseudomonas sp. P20 by using pKT230. A hybrid plasmid pKK1 was constructed and E. coli KK1 transformant was selected by transforming the pKK1 hybrid plasmid carrying pcbC into E. coli XL1-Blue. By transferring the pKK1 plasmide of E. coli KK1 into Pseudomonas sp. DJ-12 by conjugation, a recombinant strain Pseudomonas sp. P20, Pseudomonas sp. DJ-12, and the recombinant cell assay methods. Pseudomonas sp. DJ12-C readily degraded 4CB and 2, 3-DHBP to produce 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoic acid (HOPDA), and the resulting 4CBA and benzoic acid were continuously catabolized. Pseudomonas sp. DJ12-C degraded 1 mM 4CB completely after incubation for 20 h, but Pseudomonas sp. P20 and Pseudomonas sp. DJ-12 showed only 90% and Pseudomonas sp. DJ-12 had, but its degradation activity to 2, 3-DHBP, 3-methylcatechol, and catechol was improved.

  • PDF

Biological Control of Soybean Anthracnose by Pseudomonas sp. (Pseudomonas sp.를 이용한 콩 탄저병의 생물학적 방제)

  • Oh, Jeung-Haing;Kim, Kyu-Hong
    • Research in Plant Disease
    • /
    • v.9 no.3
    • /
    • pp.174-178
    • /
    • 2003
  • Pseudomonas sp. antagonistic to Colletotrichum truncatum and C. gloesporioies was selected as a biological control agent for soybean anthracnose. Pseudomonas sp. inhibited the mycelial growth of pathogens effectively as the funhicides such as benomyl and fluazinam in vitro tests without any adverse effects on soybean. Seed treatment with Pseudomonas sp. increased emergence rate of soybean seeds significantly after inoculaton with C. truncatum. When the suspension of Pseudomonas sp. was sprayed on soybean plants, the control efficacy was not different from that of fungicides, benomyl and fluazinam two weeks after treatment, however the efficacy did not last long enough after three weeks.

Dechlorination of 4-Chlorobenzoate by Pseudomonas sp. DJ-12

  • Chae, Jong-Chan;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.290-294
    • /
    • 1997
  • 4-Chlorobiphenyl-degrading Pseudomonas sp. DJ-12 was able to degrade 4-chlorobenzoate(4CBA), 4-iodobenzoate, and 4-bromobenzoate completely under aerobic conditions. During. the degradation of 4CBA by Pseudomonas sp. DJ-12, chloride ions were released by dechlorination and 4-hydroxybenzoate was produced as an intermediate metabolite. The NotI-KNA fragments of pKC157 containing dechlorination genes hybridized with the gene encoding 4CBA:CoA dehalogenase of Pseudomonas sp. CBS3 which is responsible for the hydrolytic dechlorination of 4CBA. These results imply that Pseudomonas sp. DJ-12 degrades 4CBA to 40hydroxybenzoate via dechlorination as the initial step of its degradativ pathway. The genes responsible for dechlorination of 4CBA were found to be blcated on the chromosomal DNA of Pseudomonas sp. DJ-12.

  • PDF

Isolation and Characteristics of Polyhydroxyalkanoates Producing Pseudomonas sp. MBEL21 (신규 Pseudomonas sp. MBEL21 균주의 Polyhydroxyalkanoates 생산 특성)

  • 최종일;이승환;이상엽
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.123-127
    • /
    • 2004
  • Pseudomonas sp. MBEL21 was newly isolated from soil samples and found to accumulate medium-chain-length Polyhydroxyalkanoates(MCL-PHAs) using oleic acid as a sole carbon source. Among the various nutrient limiting conditions examined, including nitrogen, sulfur and phosphorus, only phosphorus limitation supported the accumulation of MCL-PHAs up to 15 wt% of dry cell weight in flask cultures. MCL-PHAs produced by Pseudomonas sp. MBEL21 was mainly composed of 3-hydroxy-5-cis-tetradecenoate. Fed-batch culture of Pseudomonas sp. MBEL21 by novel feeding strategies based on cell growth charcteristics was carried out under phosphorus limitation using oleic acid as a sole carbon source. The final cell concentration and PHA content of 82 g/L and 28 wt%, respectively, were obtained. Furthermore, PHA consisted of MCL-hydroxyalkanoates and 3-hydroxybutyrate could be produced using olive oil as a sole carbon source.

Characteristics of Biosurfactant Producing Pseudomonas sp. G314 (생물 계면활성제를 생산하는 Pseudomonas sp. G314의 특성)

  • Shim, So-Hee;Park, Kyeong-Ryang
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.286-293
    • /
    • 2006
  • Three hundred thirty two bacterial colonies which were able to degrade crude oil were isolated from soil samples that were contaminated with oil in Daejon area. Among them, one bacterial strain was selected for this study based on its low surface tension ability, and this selected bacterial strain was identified as Pseudomonas sp. G314 through physiological-biochemical tests and analysis of its 16S rRNA sequence. Pseudomonas sp. G314 showed a high resistance to antibiotics such as ampicillin, chloramphenicol, spectinomycin, and streptomycin, and heavy metals such as Li, Cr, and Mn. It was found that the optimal pH and temperature for biosurfactant production of Pseudomonas sp. G314 were pH 7.0 and $30^{\circ}C$, respectively. After seven hours of inoculated, the biosurfactant activity reached the maximum, and surface tension of the culture broth was decreased from 72 to 25 dyne/cm. The crude biosurfactant was obtained from the culture broth by acid precipitation, followed by solvent extraction, evaporation and then freeze drying. The CMC (critical micelle concentration) value of the crude biosurfactant was 20 mg/L.

Biodegradiation of Benzoate by Pseudomonas sp. (Pseudomonas sp.에 의한Benzoate의 생분해)

  • 김교창;정준영
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.3
    • /
    • pp.165-170
    • /
    • 1996
  • The biodegradation of high concentration of benzoate by enrichment culture with Pseudomonas sp. was investigated. During 50 days continuous culture, average of removal rate of benzoate and COD were 90% and 83%, respectively. And the enzymatic activity of catechol 2,3-dioxygenase was determined in the continuous culture but not Catechol 1,2-dioxygenase. On the other hand, Pseudomonas sp in the culture was investigated with SEM and the result was revealed that the cell shape was more demage according concentration of benzoate.

  • PDF

Confirmation of Trichloroethylene-Degrading Enzyme from a Phenol-Degrading Bacterium, Pseudomonas sp. EL-04J (페놀분해세균인 Pseudomonas sp. EL-04J로부터 Trichloroethylene 분해효소의 확인)

  • Park, Geun-Tae;Kim, Ho-Sung;Son, Hong-Ju;Lee, Gun;Park, Sung-Hoon;Lee, Sang-Jun
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.561-565
    • /
    • 2002
  • Pseudomonas sp. EL-041 was previously isolated from phenol-acclimated activated sludge. This bacterium was capable of degrading phenol and cometabolizing trichloroethylene (TCE). In this study, we report the identification of trichloroethylene- degrading enzyme in Pseudomonas sp. EL-041 by the investigation of enzyme activity and DNA sequencing of specific phenol oxygenase gene. As the results of experiment, trichloroethylene-degrading enzyme in Pseudomonas sp. EL-041 was monooxygenase and suspected to phenol hydroxylase.

Biodegradation of Polychlorinated Biphenyls (PCBs) within Insulating Oil by Pseudomonas sp. P2 (Pseudomonas sp. P2에 의한 절연류 내의 Polychlorinated Biphenyls (PCBs)의 분해)

  • Kim, Jung-Ho;Choi, Sang-Ki;Kim, Young-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 1996
  • Polychlorinated Biphenyls(PCBs)의 생물학적 처리가 시도되고 있으며, PCBs를 분해할 수 있는 미생물을 이용할 수 있다. 따라서 본 연구에서는 폐기된 절연유의 생물학적 처리를 위하여 PCBs를 분해하는 균을 분해하였으며, 분해된 균을 이용하여 절연유 내의 Polychlorinated Biphenyls(PCBs) 분해를 회분식 실험에서 연구하였다. 대구의 신천으로부터 유일한 탄소원으로 Biphenyl을 포함하고 있는 고체배지에서 PCBs를 분해할 수 있는 Pseudomonas sp. P2 균주를 분해하였다. PCBs의 용해도를 높이기 위해 사용된 유화제 alkyl aryl ethoxylated phosphate가 200 mg/L에서는 Pseudomonas sp. P2 균주의 성장에 영향을 미치지 않았다. 1000 mg/L의 Biphenyl과 PCBs에 Pseudomonas sp. P2를 접종하여 160시간 배양후에 Biphenyl과 PCBs의 분해가 각각 97.5%, 58.0%였다. Biphenyl 1000 mg/L에서 최대성장율($\mu_{max}$)은 0.34 $day^{-1}$, 0.26 였다. 따라서 염소가 결합되지 않은 Biphenyl는 염소가 결합된 PCBs보다 분해가 빠르게 진행되었다. 또한 Pseudomonas sp. P2는 Biphenyl과 PCBs의 분해로 부터 유도된 황색의 분해대사산물을 확인하였다. 본 연구에서는 Pseudomonas sp. P2 균주가 절연유 내의 PCBs를 분해할 수 있다는 것을 확인하였다.

  • PDF

Characteristics of Biosurfactant Producing Pseudomonas sp. Z1 (생물 계면활성제를 생산하는 Pseudomonas sp. Z1의 특성)

  • Chang, Dong-Ho;Ko, Eun-Jung;Park, Kyeong-Ryang
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.134-140
    • /
    • 2011
  • One hundred forty five bacterial colonies which were able to degrade crude oil were isolated from soil samples that were contaminated with oil in the Daejon area. Among these colonies, one bacterial strain was selected for this study based on its low surface tension ability, and this selected bacterial strain was identified as Pseudomonas sp. Z1 through physiological-biochemical tests and analysis of its 16S rRNA sequence. Pseudomonas sp. Z1 showed a high resistance to antibiotics such as chloramphenicol and ampicillin, as well as heavy metals such as lithium, manganese, and barium. It was found that the optimal pH and temperature for biosurfactant production of Pseudomonas sp Z1 were pH 6.0-7.0 and $30^{\circ}C$, respectively. After ten hours of inoculation, the biosurfactant activity of the culture broth decreased rapidly, and had maximum surface tension (28 dyne/cm) after twenty-one hours incubation. The biosurfactant activity of the culture broth was also decreased up to 2% NaCl concentration.

Effects of Nutritional Sources on Degradation of Polychlorinated Biphenyls (PCBs) by Pseudomonas sp. P2 (Pseudomonas sp. P2에 의한 Polychlorinated Biphenyls(PCBs) 분해에 대한 영양원의 영향)

  • 최상기;금정호
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.611-617
    • /
    • 1996
  • The effects of nutritional sources on growth of Pseudomonas sp. P2 were investigated in medium containing biphentyl as a carbon source. To determine characterization of Pseudomonas sp. P2, the incubation time was determined to 100 h of the log phase in the growth curve. The optimal compositions for the growth of Pseudomonas sp. P2 degrading polychlorinated biphenyls (PCBs) were 1000 mg/L $NH_4NO_3$, 1000mg/L KH_2PO_4$, 100mg/L MgSO_4$.$7H_2O$, 30mg/L $CaCl_2$.$2H_2O$, 200mg/L NaCl, and 10mg/L $FeSO_4$.$7H_2O$. Pseudomonas sp. P2 showed the degradability of 59.3%, 57.6%, 51.4%, and 48.7% at 500mg/L, 1000mg/L, 1500mg/L, and 2000mg/L of the PCBs within insulating oil after 100 h incubation under the optimum conditions, respectively.

  • PDF