• Title, Summary, Keyword: Polymer housing

Search Result 57, Processing Time 0.032 seconds

Development of Polymer Mortar Floor Members for Swine Housing Reinforced by FRP (FRP 보강 폴리머 모르터를 이용한 돈사 바닥재 개발)

  • 유능환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.124-129
    • /
    • 2000
  • The objective of this study is to develop a polymer mortar floor members for wine housing with high strength and durability using unsaturated polyester resin to complement defects of conventional cement concrete. Physical and mechanical properties of the polymer mortar floor members for swine housing are also investigated. Specimens with different panel thickness and FRP reinforcement are prepared, tested, and analyzed with respect to structural behaviors. Cracking moment is mostly affected by the thickness and reinforced FRP. Data of the study can be applied to the designing and planning of floor members for swine housing.

  • PDF

Effect of Thermal Mechanical Stresses on Electrical Characteristics of Polymer Housed Surge Arresters (열-기계적 스트레스가 폴리머 피뢰기의 전기적 특성에 미치는 영향)

  • Cho, Han-Goo;You, Dae-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.555-560
    • /
    • 2007
  • This paper describes the results of a study on the sealing integrity of polymer housed surge arrester based on the thermal mechanical test. The polymer housed surge arrester employs silicone insulating materials for its housing, instead of the conventional porcelain housing. The polymer housed surge arresters exhibited the highest sealing integrity because it is not air volume between the FRP(fiber reinforced plastics) module and the silicone housing. In accordance, the sealing integrity of station class surge arresters is investigated with moisture ingress test. And, the influence of sealing integrity was evaluated through such as measurement of the deflection, reference voltage, leakage current. In electrical characteristics, reference voltage decreased in the range of $16.45{\sim}16.15\;kV$ with after thermal mechanical test. In contrary, despite the continued moisture ingress, the polymer housed surge arresters exhibited almost the same leakage current value and the resistive leakage current has risen slightly. As a results, It was thought that the polymer housed surge arresters shows good stability with sealing integrity.

Development of Polymer Bushing for Overhead Line Switch (가공개폐기용 폴리머 부싱 개발)

  • 최경선;주종민;이철호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.787-790
    • /
    • 2001
  • Polymer bushing used for overhead line switch was designed and investigated. Requirements of electrical ratings such as partial discharge, ac withstand voltage, impulse voltage and material properties were proposed in accordance with IEEE 386 and pre-standard (PS) 151-146∼147, 170∼180 of KEPCO. The polymer bushing consists of an internal epoxy bushing and external housing made of EPDM rubber. The rubber housing was molded with mold cone. Therefore, the polymer bushing offers several advantages like light weight, good sealing properties, easy installation and excellent performance in contamination. Electric field analysis was also introduced in order to verify the reliability of the design.

  • PDF

Temperature Characteristics with Structure of 18kV Lightning Arresters for Distribution System (18kV 배전용 피뢰기의 구조에 따른 온도특성)

  • Cho, Han-Goo;Yoon, Han-Soo;Lee, Un-Yong;Kim, Suk-Sou;Choi, In-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.1125-1128
    • /
    • 2004
  • This paper presents the temperature characteristics with structure of 18 kV lightning arresters for distribution. Three types of polymer arresters were fabricated and ceramic type arrester was also ready to investigate. Below $100^{\circ}C$, three types of polymer arresters exhibited almost the same leakage current value, but above $100^{\circ}C$, polymer arrester that arrester module was injected into polymer housing with grease exhibited the highest leakage current and the arrester with the lowest leakage current was the arrester that silicon rubber was directly injected to arrester module. The rising of leakage current of polymer arrester with grease was because of existing grease between FRP winding and silicon housing, and reducing the insulation characteristics of the grease. All polymer arresters exhibited the same temperature characteristics but ceramic typr arrester was slower than polymer arrester in heat emission despite lowest leakage current. It was thought that the air layer between ZnO varistor blocks and ceramic housing prevented the heat emission. However, in spite of the difference of the structure, the variation of the surface temperature of all arresters exhibited the same result.

  • PDF

A Study on Module Design and Performance of Polymer Arrester (폴리머 피뢰기의 모듈 설계 및 성능에 관한 연구)

  • Cho, Han-Goo;Chun, Jong-Uk;Kang, Yeong-Kil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.108-111
    • /
    • 2003
  • The main objective of this paper is to module design and pressure relief test a new type of polymer gapless surge arrester for power distribution line. Metal oxide surge arrester for most electric power system applications, power distribution line and electric train are now being used extensively to protect overvoltage due to lightning. Surge arresters with porcelain housing must not have explosive breakage of the housing to minimize damage to other equipment when subjected to internal high short circuit current. When breakdown of gapless elements in a surge arrester occurs due to flashover, fault short current flows through the arrester and internal pressure of the arrester rises. The pressure rise can usually be limited by fitting a pressure relief diaphragm and transferring the arc from the inside to the outside of the housing. However, there is possibility of porcelain fragmentation caused by the thermal shock, pressure rise, etc. Non-fragmenting of the housing is the most desired way to prevent damage to other equipment. The pressure change which is occurred by flashover become discharge energy. This discharge energy raises to damage arrester housing and arrester housing is dispersed as small fragment. Therefore, the pressure relief design is requested to obstruct housing dispersion.

  • PDF

Study on the relief design for the fault current of polymer arrester (폴리머 피뢰기의 고장전류에 대한 방압 설계기술에 관한 연구)

  • Kim, In-Sung;Park, Hoy-Yul;Cho, Han-Goo
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1717-1719
    • /
    • 1999
  • The chief advantage of polymer arrester. from design of pressure relief, anti-contamination, electrical failure was reduced by outdoor polymer housing. In the first for development of pressure relief design for polymer arrester, fault current and surge were studied through experiments of electrical. Designed the FRP inner tube and unit modules for pressure relief housing. Tested the performance of unit modules for pressure relief of polymer arrester, and the result was successful. The pressure relief of polymer arrester depend on design pattern of diamond shape and ellipse. Study on the pressure relief of FRP inner tube for outdoor polymer arrester. Designed and manufactured FRP inner tube of polymer arrester. Tested the fault current of polymer arrester per 10 kA, 10 cycle.

  • PDF

Development and Characteristics Evaluation of Polymer Housing Type Arresrter (폴리머 housing형 피뢰기의 개발과 특성 평가)

  • 조한구;김인성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.82-85
    • /
    • 1997
  • This paper describes the development of new type arrester for 22.9kV class distribution lines, with polymer insulating materials applied to their housings. The new arrester employs silicone insulating material for its housing, instead of the conventional porcelain housing, aiming at reduction in size and weight and explosion proof against internal short circuit failure. And, since the design of sheds is not restricted. it is possible to provide a long surface leakage distance per strike length and improve anti-contamination performance.

  • PDF

A Characteristics of Leakage Current and Temperature on Forest Fire of EHV Polymer Insulator for 154KV T/L (154kV 송전용 폴리머 애자의 산불에 대한 누설전류 및 온도 특성)

  • Choi, In-Hyuk;Choi, Jang-Hyun;Park, Jun-Ho;Lee, Dong-Il;Kim, Tae-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.517-518
    • /
    • 2006
  • In this paper, to understand the effect of forest fires on polymer insulators for transmission lines, it was observed the aging of the housing surface of the polymer insulators. And, this paper shows the way how to create the artificial field testing in order to simulate forest fire. As the results of, maximum leakage current peaks by influence of flame increased from 1[mA] to 1.4[mA], and SEM results show the inorganic component on the housing surface because the organic component matters disappeared. Therefore, the case of exposed by forest fire, polymer insulator can be used in the early stage, but an exchange needs active countermeasure to be stabilize power delivery.

  • PDF

Relief Performance of Fault Current and Design/Manufacturing of Polymer Arresters for Power Distribution (배전선로용 폴리머 피뢰기의 모듈 설계/제조 및 성능)

  • Cho, Han-Goo;Yun, Han-Su;Jang, Tae-Bong;Chie, In-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.175-179
    • /
    • 2005
  • The main objective of this paper is to module design and pressure relief test a new type of polymer gapless surge arrester for power distribution line. Metal oxide surge arrester for most electric power system applications, power distribution line and electric train are now being used extensively to protect overvoltage due to lightning. Surge arresters with porcelain housing must not have explosive breakage of the housing to minimize damage to other equipment when subjected to internal high short circuit current. When breakdown of gapless elements in a surge arrester occurs due to flashover, fault short current flows through the arrester and internal pressure of the arrester rises. The pressure rise can usually be limited by fitting a pressure relief diaphragm and transferring the arc from the inside to the outside of the housing. However, there is possibility of porcelain fragmentation caused by the thermal shock, pressure rise, etc. Non-fragmenting of the housing is the most desired way to prevent damage to other equipment. The pressure change which is occurred by flashover become discharge energy. This discharge energy raises to damage arrester housing and arrester housing is dispersed as small fragment. Therefore, the pressure relief design is requested to obstruct housing dispersion.

  • PDF