• Title, Summary, Keyword: Photovoltaic power generator

Search Result 100, Processing Time 0.047 seconds

A Study on the Sub Power Generator for Photovoltaic/Wind Hybrid System (태양광/풍력 복합발전의 보조 전력발생장치 개발에 대한 연구)

  • Park Se-Jun;Yoon Pil-Hyun;Lim Jung-Yeol;Lee Jeong-Il;Cha In-Su
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.247-251
    • /
    • 2003
  • The developments of the hybrid energy are necessary since the future alternative energies that have no pollution and no limitation are restricted. Currently power generation system of MW scale has been developed. However, even photovoltaic system cannot always generate stable output with ever-changing weather condition. In this paper, sub power generator for hybrid system(photovoltaic 500[W], wind power generation 400[W]) was suggested. Sub power Generator that uses elastic energy of spiral spring to photovoltaic system was also added for the present system. In an experiment, when output of photovoltaic system gets lower than 24[V] (charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates In DC generator. Also, control algorithm of sub power generator is used genetic algorithm(GA).

  • PDF

A Study on the Auxiliary Power Generator for Urban Photovoltaic/Wind Hybrid System (도시형 태양광/풍력 복합발전의 보조 전력발생장치 개발에 대한 연구)

  • Park, Se-Jun;Yun, Jeong-Phil;Yoon, Pil-Hyun;Ji, Woon-Seok;Lim, Jung-Yeol;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.187-191
    • /
    • 2004
  • Photovoltaic and wind power generation have an advantage of unpolluted and unlimited amount of energy resource. Since there is such an advantage in these energies, But photovoltaic system and wind system cannot always generate stable output with ever-changing weather condition. In this paper, the auxiliary power generator for hybrid system(photovoltaic 500[W], wind power generation 400[W]) was suggested. the auxiliary power generator that uses elastic energy of spiral spring to photovoltaic system was also added for present system. when output of photovoltaic system gets lower than 24[V], power was continuously supplied to load through the inverter by charging energy of spiral spring operates in DC generator.

  • PDF

Parallel Operation Characteristics of Utility Interactive Photovoltaic System and Revolving Field Type Synchronous Generator (계통연계 태양광발전시스템과 회전계자형 동기발전기의 병렬운전 특성)

  • Ryu, Yeon-Soo;Yoo, Wang-Jin;Lee, Checl-Gyu;Moon, Jong-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • /
    • pp.43-48
    • /
    • 2008
  • Through simulations and field experiment on A.C. parallel operation of both Utility Interactive Photovoltaic System and Diesel Engine Revolving Field Type Synchronous Generator, following factors have been found. First, the inverter should be operated in three modes of frequency(mode.1: ${\pm}$0.3Hz, mode.2: ${\pm}$1Hz, mode.3: ${\pm}$2Hz) as default, considering properties of operating Synchronous Generator. Second, as a result of supplying 13.5kW of residual power, it has been found that Synchronous Generator takes the power input only as reactive power, because it was electrically stable with frequency of 60.14Hz and high voltage of 222.3V even when power factor was -0.94. Besides, it was mechanically stable, too, because the quake, noise, and temperature of Synchronous Generator in this case were 7.5mm/s, 97dB, and $6^{\circ}C$ respectively, which were lower than normal load connection of 145.6kW; 11.03mm/s. Thus, load share of Revolving Field Type Synchronous Generator reduces according to the supply of Photovoltaic System to the load power. In this experiment, 200kW of Synchronous Generator and 40kW of Photovoltaic System were operated in parallel. The load share was 20% in maximum. and 11.1lit/hr of fuel was saved.

  • PDF

Design of the power generator system for photovoltaic modules

  • Park, Sung-Joon
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.239-245
    • /
    • 2008
  • In this paper, a dc-dc power converter scheme with the FPGA based technology is proposed to apply for solar power system which has many features such as the good waveform, high efficiency, low switching losses, and low acoustic noises. The circuit configuration is designed by the conventional control type converter circuit using the isolated dc power supply. This new scheme can be more widely used for industrial power conversion system and many other purposes. Also, I proposed an efficient photovoltaic power interface circuit incorporated with a FPGA based DC-DC converter and a sine-pwm control method full-bridge inverter. The FPGA based DC-DC converter operates at high switching frequency to make the output current a sine wave, whereas the full-bridge inverter operates at low switching frequency which is determined by the ac frequency. As a result, we can get a 1.72% low THD in present state using linear control method. Moreover, we can use stepping control method, we can obtain the switching losses by Sp measured as 0.53W. This paper presents the design of a single-phase photovoltaic inverter model and the simulation of its performance.

  • PDF

A Study on Utility Inter-Active for Urban Photovoltaic/Wind Hybrid Generation System (도시보급용 소형 태양광/풍력 복합발전의 계통연계운전에 관한 연구)

  • Ji Woon-Seok;Yoon Pil-Hyun;Cho Kyeng-Jai;Lee Jeong-il;Lim Jung-Yeol;Cha In-Su
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1504-1506
    • /
    • 2004
  • Photovoltaic and wind power generation have an advantage of unpolluted and unlimited amount of energy resource. Since there is such an advantage in these energies, But photovoltaic system and wind system cannot always generate stable output with ever-changing weather condition. In this paper, the auxiliary power generator for hybrid system(photovoltaic 500[W], wind power generation 400[W]) was suggested. the auxiliary power generator that uses elastic energy of spiral spring to photovoltaic system was also added for present system. when output of photovoltaic system gets lower than 24[V], power was continuously supplied to load through the inverter by charging energy of spiral spring operates in DC generator.

  • PDF

The Study on the Controller for Supplying Stably Power with a Stand-Alone Photovoltaic/Wind/Small Generator Hybrid Power Generation System (독립형 태양광, 풍력, 소형발전기 복합시스템에서 안정적인 전력공급을 위한 컨트롤러에 관한 연구)

  • Choi, Byoung-Soo;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.48-56
    • /
    • 2012
  • The object of this paper is the controller for supplying stably power in a separate house in which a hybrid electrical storage system with a stand-alone photovoltaic/wind power generation system and a small generator is applied. In the photovoltaic/wind hybrid power system used in the separate house, when only the battery is used in sunless days, the capacity of the battery is become larger. In particular, as in recent days, if cloudy days are frequent due to anomaly climate, it is difficult to estimate the number of sunless days. Accordingly, it is preferable to build the electrical storage system that numbers of sunshineless days are to be controlled and a shortage amount of the power generation capacity is to be handled by a small generator system. In order to supply stably power of new renewable energy such as solar to any separate houses, it is preferable to reduce the capacity of battery by decreasing the number of sunless days when estimating the capacity of battery and to drive the small generator for compensation of the power shortage. Such system needs components including inverters for photovoltaic and wind power generation system, batteries and controllers for automatically driving the small generator, based upon the nature of the stand-alone house, and it is preferable to use the controller having a simpler and higher stability by adopting the all-in-one scheme to facilitate its maintenance.

Optimization of Residential Photovoltaic-Fuel Cell Hybrid System Using HOMER(R) (HOMER를 이용한 가정용 태양광-연료전지 하이브리드시스템의 운전 최적화)

  • Park, Se-Joon;Li, Ying;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.129-133
    • /
    • 2010
  • A hybrid system which is combined several complementary new and renewable power sources, such as photovoltaic, fuel-cell, and wind generator, etc., has been presented in various approaches. For instance, a photovoltaic cannot always generate stable output power with ever-changing weather condition, so it might be co-generated with a wind generator, diesel generator, and some other sources. In this paper, a residential PV-FC hybrid system is suggested as a distribution power source, and its operation is optimized by HOMER$^{(R)}$. As a result, it is the most economic that 5[kW] PV, 1[kW] FC, 4 batteries, 2[kW] electrolyzer, 0.5[kg] $H_2$ tank, 3[kW] converter are applied to the hybrid system.

A novel three-phase power system for a simple photovoltaic generator (태양광발전을 위한 새로운 3상한 시스템에 관한 연구)

  • Park, Sung-Joon;Kim, Jung-Hun;Kim, Jin-Young;Kim, Jeoung-Hyun;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.181-184
    • /
    • 2005
  • Operating conditions of photovoltaic power generator is very sensitive to the PV modules. The PV module's control is an importance issue in the removing DC ripple noise. In this paper, the phase-shifted-carrier technique, which is a new three-step dc-dc power multi-converter schemes, is applied to solar generator system to improve the output current waveform. The novel type of three-step dc-dc converter presented has many features such as the good output waveform, high efficiency, low switching losses, low acoustic noise. The circuit configuration is constructed by the conventional full-bridge type converter circuit using the isolated DC power supply for which the solar cell is very suitable. In the end, a circuit design for understanding three-step dc-dc converter and new solar power system were presented

  • PDF

A study on the Characteristics of the old modules (오래된 모듈의 특성에 관한 연구)

  • Hong, Sa-Keun;Choi, Hong-Kyoo;Yum, Sung-Bae;Song, Young-Joo;Choi, Young-Jun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • /
    • pp.351-354
    • /
    • 2009
  • The solar photovoltaic power generator is more important than other renewable energy. Because The solar photovoltaic power generator has been commercialized. So the solar photovoltaic power plants have been constructed. The photovoltaic module lifetime is estimated about 20 year. But The results can not be trusted Because It did not test in the korea. In this paper, We test the maximum power of three modules used 23 years.

  • PDF

Autonomous Micro-grid Design for Supplying Electricity in Carbon-Free Island

  • Hwang, Woo-Hyun;Kim, Sang-Kyu;Lee, Jung-Ho;Chae, Woo-Kyu;Lee, Je-Ho;Lee, Hyun-Jun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1112-1118
    • /
    • 2014
  • In island and backcountry areas, electrical power is usually supplied by diesel generators. It is difficult for small scale diesel generators to have an economy of scale owing to the usage of fossil fuels to produce electricity. Also, there is a problem of carbon dioxide emissions that brings some environmental pollution to the entire region of the area. For solving those, this paper proposes a design method of autonomous micro-grid to minimize the fossil fuels of diesel generator, which is composed of diesel generator, wind turbine, battery energy storage system and photovoltaic generation system. The proposed method was verified through computer simulation and micro-grid operation system.