• Title, Summary, Keyword: Pd germanide

Search Result 2, Processing Time 0.025 seconds

Analysis of Thermal Stability and Schottky Barrier Height of Pd Germanide on N-type Ge-on-Si Substrate (N형 Ge-on-Si 기판에 형성된 Pd Germanide의 열안정성 및 Schottky 장벽 분석)

  • Oh, Se-Kyung;Shin, Hong-Sik;Kang, Min-Ho;Bok, Jeong-Deuk;Jung, Yi-Jung;Kwon, Hyuk-Min;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.271-275
    • /
    • 2011
  • In this paper, thermal stability of palladium germanide (Pd germanide) is analyzed for high performance Schottky barrier germanium metal oxide semiconductor field effect transistors (SB Ge-MOSFETs). Pd germanide Schottky barrier diodes were fabricated on n-type Ge-on-Si substrates and the formed Pd germanide shows thermal immunity up to $450^{\circ}C$. The barrier height of Pd germanide is also characterized using two methods. It is shown that Pd germanide contact has electron Schottky barrier height of 0.569~0.631 eV and work function of 4.699~4.761 eV, respectively. Pd germanide is promising for the nanoscale Schottky barrier Ge channel MOSFETs.

Synthesis and Applications of Noble Metal and Metal Silicide and Germanide 1-Dimensional Nanostructures

  • Yoon, Ha-Na;Yoo, Young-Dong;Seo, Kwan-Yong;In, June-Ho;Kim, Bong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2830-2844
    • /
    • 2012
  • This review covers recent developments in our group regarding the synthesis, characterization and applications of single-crystalline one-dimensional nanostructures based on a wide range of material systems including noble metals, metal silicides and metal germanides. For the single-crystalline one-dimensional nanostructures growth, we have employed chemical vapor transport approach without using any catalysts, capping reagents, and templates because of its simplicity and wide applicability. Au, Pd, and Pt nanowires are epitaxially grown on various substrates, in which the nanowires grow from seed crystals by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. We also present the synthesis of numerous metal silicide and germanide 1D nanostructures. By simply varying reaction conditions, furthermore, nanowires of metastable phase, such as $Fe_5Si_3$ and $Co_3Si$, and composition tuned cobalt silicides (CoSi, $Co_2Si$, $Co_3Si$) and iron germanides ($Fe_{1.3}Ge$ and $Fe_3Ge$) nanowires are synthesized. Such developments can be utilized as advanced platforms or building blocks for a wide range of applications such as plasmonics, sensings, nanoelectronics, and spintronics.