• Title, Summary, Keyword: Pathogenic Bacteria

Search Result 1,080, Processing Time 0.054 seconds

Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants

  • Vu, Nguyen Trung;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.204-217
    • /
    • 2020
  • In nature, plants are always under the threat of pests and diseases. Pathogenic bacteria are one of the major pathogen types to cause diseases in diverse plants, resulting in negative effects on plant growth and crop yield. Chemical bactericides and antibiotics have been used as major approaches for controlling bacterial plant diseases in the field or greenhouse. However, the appearance of resistant bacteria to common antibiotics and bactericides as well as their potential negative effects on environment and human health demands bacteriologists to develop alternative control agents. Bacteriophages, the viruses that can infect and kill only target bacteria very specifically, have been demonstrated as potential agents, which may have no negative effects on environment and human health. Many bacteriophages have been isolated against diverse plant-pathogenic bacteria, and many studies have shown to efficiently manage the disease development in both controlled and open conditions such as greenhouse and field. Moreover, the specificity of bacteriophages to certain bacterial species has been applied to develop detection tools for the diagnosis of plant-pathogenic bacteria. In this paper, we summarize the promising results from greenhouse or field experiments with bacteriophages to manage diseases caused by plant-pathogenic bacteria. In addition, we summarize the usage of bacteriophages for the specific detection of plant-pathogenic bacteria.

The Antibacterial Activity of Garlic Juice Against Pathogenic Bacteria and Lactic Acid Bacteria. (병원성 세균과 젖산균에 대한 마늘의 항균작용)

  • 정건섭;강승연;김지연
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.32-35
    • /
    • 2003
  • This study was carried out to determine the inhibitory effect of garlic juice against Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella flexneri. Staphylococcus aureus, Streptococcus mutans, Virio. parahaemolyticus which are food pathogenic bacteria and Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus casei, Lactobacillus plantarum, Lactococcus. lactis, Leuconostoc mesenteroides which are lactic acid bacteria. An aqueous extract of garlic was bacteriocidal against Gram-positive and Gram-negative bacteria in all concentrations (0.1∼2.5(w/v)%) tested in this experiment. Especially 0.5(w/v)% garlic juice inactivated completely E. coli, S. typhimurium, S. flexineri, V. parahaemolyticus and 1.0(w/v)% garlic juice perfectly reduced P. aeruginosa, S. mutans. Generally, the experiment result indicate that garlic juice restrains the growth of the pathogenic bacteria better than the lactic acid bacteria. Therefore, garlic has potential for the preservation of processed foods.

Detection and Kinetics of Mucosal Pathogenic Bacteria Binding with Polysaccharides

  • Chung, Kyong-Hwan;Park, Jung-Soon;Hwang, Hyun-Soo;Kim, Jin-Chul;Lee, Ki-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1191-1197
    • /
    • 2007
  • The detection and kinetics of mucosal pathogenic bacteria binding on polysaccharide ligands were studied using a surface plasmon resonance biosensor. The kinetic model applied curve-fitting to the experimental surface plasmon resonance sensorgrams to evaluate the binding interactions. The kinetic parameters for the mucosal pathogenic bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Serratia marcescens) with the alginate ligand were determined from a kinetic model. In addition, the binding interactions of the mucosal pathogenic bacteria with polysaccharide binding pairs (Pseudomonas aeruginosa/alginate, Streptococcus pneumoniae/pneumococcal polysaccharide, Staphylococcus aureus/pectin) were also compared with their kinetic parameters. The rate constants of association for Pseudomonas aeruginosa with the alginate ligand were higher than those for Pseudomonas fluorescens. Serratia marcescens had no detectable interaction with the alginate ligand. The adhesion affinity of Pseudomonas aeruginosa with alginate was higher than that for the other binding pairs. The binding affinities of the pathogenic bacteria with their own polysaccharide were higher than that of Staphylococcus aureus with pectin. Measuring the contact angle was found to be a feasible method for detecting binding interactions between analytes and ligands.

Inhibition of Pathogenic Bacteria by Pediococcus pentosaceus Strain SH-10 Isolated from Hard Clam Meretrix meretrix Sikhae (백합(Meretrix meretrix) 식해에서 분리한 Pediococcus pentosaceus SH-10에 의한 병원성 세균의 억제 기작)

  • Shin, Dong-Min;Kim, Hee-Dai;Koo, Jae-Geun;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.600-605
    • /
    • 2012
  • In this study, we investigated the mechanism of inhibition of pathogenic bacteria by Pediococcus pentosaceus strain SH-10 isolated from hard Clam Meretrix meretrix sikhae. When P. pentosaceus SH-10 was co-cultured in MRS broth with pathogenic bacteria, including Bacillus cereus, Listeria monocytogenes, Salmonella choleraesuis and Staphyloccus aureus, no viable pathogenic cells were detected after 18 h of incubation. However, pediocin or a pediocin-like bacteriocin was not detected in cultures of P. pentosaceus SH-10 by the agar diffusion method. Organic acids were produced in MRS broth in proportion to the incubation time of P. pentosaceus SH-10. These results indicate that P. pentosaceus SH-10 inhibited the growth of pathogenic bacteria by lowering the pH of the growth medium through the production of organic acids, including sodium lactate, sodium acetate, and sodium citrate.

Analysis of Waterborne Pathogenic Bacteria among Total Coliform Positive Samples in the Groundwater of Chungcheongnam-do Province, Korea (충남지역 지하수에서 분리한 총대장균군 양성시료 중 수인성 병원균의 분석)

  • Yu, Jungho;Wang, Changkeun;Shin, Inchul;Kim, Donguk;Park, Kwisung
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.3
    • /
    • pp.189-195
    • /
    • 2016
  • Objectives: To ensure the microbiological safety of groundwater, it was confirmed whether waterborne pathogenic bacteria in groundwater samples tested positive for total coliforms in the Chungcheongnam-do Province region. Methods: Total colony counts, total coliforms and fecal coliforms were tested according to the process mandated by the drinking water quality testing standards of Korea. DNA was extracted from the samples, tested positive for total coliforms, and then subjected to real-time PCR to detect waterborne pathogenic bacteria. Results: A total of 115 samples were inadequate for drinking water. Thirty-one cases (27%) showed positive for fecal coliforms and nine cases (7.8%) showed total colony counts exceeding drinking water standards. Twenty-seven cases (23.5%) showed three items (total colony counts, total coliforms and fecal coliforms). Using the real-time PCR method, waterborne pathogens were detected in 57 cases (49.6%) in 115 samples. Seventy-eight cases of waterborne pathogenic bacteria were detected (including duplications): 27 cases of pathogenic E. coli (EPEC (19), ETEC (5), EHEC (1), EAEC (1) and EIEC (1)); 45 of Bacillus cereus; two of Yersinia spp.; two of Salmonella spp.; one of Staphylococcus aureus; one of Clostridium perfringens. Conclusion: The real-time PCR method can offer rapid and accurate detection of waterborne pathogenic bacteria. Therefore, this assay could be an alternative to conventional culture methods and can further ensure the microbiological safety of groundwater.

Distribution of Indicator Organisms and Incidence of Pathogenic Bacteria in Raw Beef Used for Korean Beef Jerky

  • Kim, Hyoun-Wook;Kim, Hye-Jung;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1337-1340
    • /
    • 2008
  • The objective of this study was to evaluate the microbial safety of raw beef used to produce Korean beef jerky, The raw beef samples harbored large populations of microorganisms. In particular, psychrophilic bacteria were found to be most numerous ($9.2{\times}10^3-1.0{\times}10^5\;CFU/g$) in the samples. Mesophilic bacteria and anaerobic bacteria were present in average numbers ($10^3-10^5\;CFU/g$). Spore-forming bacteria and coliforms were not detected below detection limit. Yeast and molds were detected at $2.2{\times}10^1-7.8{\times}10^2\;CFU/g$ in the raw beef. Ten samples of raw beef were analyzed for the presence of pathogenic bacteria. Bacillus cereus was isolated from sample B, G, and H. The B. cereus isolates from raw beef samples were identified with 99.8% agreement according to the API CHB 50 kit.

Comparison of Antibacterial Activities of Green Tea Extracts and Preservatives to the Pathogenic Bacteria (녹차추출물과 보존료의 식중독세균에 대한 항균활성 비교)

  • 박찬성;차문석
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.1
    • /
    • pp.36-44
    • /
    • 2000
  • Survival of pathogenic bacteris(S. aureus, L. monocytogenes, E. coli and S. typhimurium) in tryptic soy broth containing green tea water extract(GTW), green tea ethanol extract(GTE), potassium sorbate (PS) and sodium benzoate(SB) stored at various pH was evaluated. Tryptic soy broth(TSB) containing 0∼2%(w/v) of green tea extracts and preservatives adjusted to pH 5.5, 6.0, 6.5 and 7.0 was inoculated approximately 105 CFU/ml of pathogenic bacteria and incubated at 35$^{\circ}C$ for 24∼48 hours. Survival of bacteria was determined by viable cell counts of bacterial culture at each pH. Minimum inhibitory concentration(MIC) and minimum bactericidal concentration(MBC) of green tea extracts and preservatives against pathogenic bacteria were derived from survival curves of each bacteria. Antibacterial activities of green tea extracts increased with increasing pH but those of preservatives decreased with increrasing pH. S. aureus was the most sensitive strain to GTW and GTE but the most resistant to PS and SB. The MICs of green tea extracts to S. aureus were 0.52∼0.98% at pH 5.5∼6.0 and non inhibitory at pH 7.0. S. typhimurium was the most resistant to green tea extracts while the most sensitive to SB. The MICs of green tea extracts to S. typhimurium were 0.46∼1.62% at pH 5.5∼6.0 and 2% of PS was bactericidal at pH 5.5. 1.0∼2.0% of GTE were bactericidal to all strains tested except L. m9oncytogenes at pH 7.0. GTE was most efficient at inactivating pathogenic bacteria, generally followed by GTW, PS and SB.

  • PDF

Bactericidal Activity of Sawa-wasabi (Wasabia japonica) Against the Fish Pathogenic Bacteria

  • Shin Il-Shik
    • Fisheries and aquatic sciences
    • /
    • v.4 no.4
    • /
    • pp.252-256
    • /
    • 2001
  • In this study, the bactericidal activity of each extract from Sawa-wasabi (Wasabia japonica) root, stem and leaf against the fish pathogenic bacteria were examined. The main component related to bactericidal activity in Sawa-wasabi was well known to AlT. The Sawa-wasabi roots showed the highest AIT amount with 1.18 mg/g. Stems was 0.41 and leaves was 0.38 mg/g. All of them showed bactericidal activity against 2 strains of Vibrio hollisae, V. anguillarum, and 2 strains of Edwardsiella tarda, but weak effect against Staphylococcus capitis. The Sawa­wasabi leaves showed the strongest bactericidal activity with minimal bactericidal concentrations (MBCs) of 156.3mg of dry weight/mL against 2 strains of V. hollisae, V. anguillarum and 2 strains of E. tarda. The roots and stems showed a little weak bactericidal activities with 312-1,250mg of dry weight/mL against them. These results suggest that certain components besides AIT in Sawa-wasabi are affective in killing fish pathogenic bacteria.

  • PDF

Antibacterial Activity of Water Extract of Green Tea against Pathogenic Bacteria (식중독세균에 대한 녹차 물추출물의 항균작용)

  • 박찬성
    • Korean Journal of Food Preservation
    • /
    • v.5 no.3
    • /
    • pp.286-291
    • /
    • 1998
  • The sensitivity of various pathogenic bacteria(Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus 196E, Salmonella typhimurium) to the water extract of green tea was tested. Tryptic soy broth was inoculated with 10$\^$5/CPU/ml of pathogenic bacteria and incubated at 35$^{\circ}C$ for 30 hours. The extract was added at a final concentration of 0-2%(w/v) into culture broth at the mid or late exponential phase of bacteria. The growth of pathogenic bacteria was inhibited with increasing concentrations of the extract in culture broth and the late exponential phase cells were more resistant than the mid exponential phase cells. Cram positive bacteria(L. monocytogenes and S. aureus 196E) were more sensitive than Cram negative bacteria(E. coli O157:H7 and S. typhimurium). S. aureus had the highest sensitivity, followed by L monocytogenes, E. coli O157:H7. S. typhimurium was the most resistant to the water extract of green tea.

  • PDF

Antibacterial activity of supernatant obtained from Weissella koreensis and Lactobacillus sakei on the growth of pathogenic bacteria

  • Im, Hana;Moon, Joon-Kwan;Kim, Woan-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.415-423
    • /
    • 2016
  • This study was carried out to obtain basic data for the industrial use of Weissella koreensis and Lactobacillus sakei. The antibacterial activity of supernatants obtained from W. koreensis and L. sakei were tested against pathogenic bacteria such as Escherichia coli KCCM 11234, Salmonella enteritidis KCCM 3313, Salmonella enteritidis KCCM 12021, Salmonella typhimurium KCCM 40253, and Salmonella typhimurium KCCM 15. The supernatant of L. sakei showed antibacterial activity against E. coli KCCM 11234, S. enteritidis KCCM 12021, and S. typhimurium KCCM 15, while the supernatant of W. koreensis showed antibacterial activity against E. coli KCCM 11234 and S. enteritidis KCCM 12021. The effect of pH changes and heat treatment on antibacterial activity of the supernatants was examined using the sensitive pathogenic bacteria (E. coli KCCM 11234, S. enteritidis KCCM 12021 and S. typhimurium KCCM 15). Antibacterial activity against sensitive pathogenic bacteria was maintained under heat treatment at all temperatures, but there was no antibacterial activity associated with pH modification. Furthermore, it was confirmed that the antibacterial activity of the supernatants obtained from W. koreensis and L. sakei was a result of organic acids including, lactic, acetic, phosphoric, succinic, pyroglutamic, citric, malic, and formic acids. Therefore, the present study showed that the organic acids produced by L. sakei and W. koreensis exhibited a strong antibacterial activity against pathogenic bacteria. Moreover, in the food industry, these organic acids have the potential to inhibit the growth of pathogenic bacteria and improve the quality of stored food.