• Title/Summary/Keyword: Passive transponder

Search Result 12, Processing Time 0.178 seconds

Improving power conversion efficiency of the passive transponder (Passive 트랜스폰더에서의 전력변환 효율 향상을 위한 연구)

  • Kim, Kwang-Soo;Lee, Kyo-Sung;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1951-1953
    • /
    • 1998
  • In this study, we present the power conversion system of the passive transponder which is operated at 2.4GHz. First, The passive transponder which is the power conversion system is one of the passive transponder elements is presented. And then the power conversion system is analyzed and simulated.

  • PDF

A study on RF-DC converter of the Passive system (충전전지를 사용한 Passive Transponder에서의 RF-DC 컨버터)

  • Kim, Kwang-Soo;Kim, Jong-Bum;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.112-114
    • /
    • 1998
  • The passive system requires RF-DC converter. RF-DC converter, which is used in microwave region, is more affected by parasitic elements than used in low frequency region. So it is difficult to make the converter. RF-DC converter usually consists of resonator, shottky diode, capacitor, voltage regulator. In this study, we used the rechargeable battery instead of capacitor. If any passive transponder requires more power than general transponder, battery tech of this components is important to apply for the passive system. In this paper, passive transponder, which requires more power than general passive transponder, is presented and compared to general passive transponder.

  • PDF

The Design and Analysis of RF-DC conversion circuit in the Passive Tranponder (Passive 트랜스폰더의 RF-DC 변환회로에 대한 설계 및 분석)

  • 진인수;김종범;양경록;김양모
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.757-760
    • /
    • 1999
  • Depending upon the existence of the battery, transponder is divided into active and passive transponder. The passive transponder operates without battery and so has no limitation in its operating range and life time. But it needs the RF-DC conversion circuit. In this paper, the analysis and design of the RF-DC conversion circuit in passive transponder operated in high frequency is presented and is confirmed by simulation and experiment.

  • PDF

A Passive Transponder for Visible Light Identification Using a Solar Cell (솔라셀을 이용한 가시광 인식용 수동형 트랜스폰더)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.238-244
    • /
    • 2014
  • In this paper, we introduce a new passive transponder that operates without external power in a visible light identification system. The transponder consists of a solar cell, a photodiode, a microprocessor, and a visible LED. When a reader sends light to the transponder, the solar cell generates current from the reader light and supplies power to the other elements in the transponder. At the same time, the photodiode detects the pulse in the reader light and initiates a microprocessor to generate and send a responding light to the reader. In experiments, we realized a passive transponder using a solar cell that operated at a distance of 1m without external power.

A Passive Transponder for Visible Light Identification Using Ultrasonic wave (초음파를 이용한 가시광인식 수동형 트랜스폰더)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.192-198
    • /
    • 2017
  • In this paper, we newly developed a passive transponder for visible light identification (VLID) using ultrasonic wave. The solar cell in the transponder receives the reader light and generates current for supplying power to the transponder circuit. At the same time the solar cell detects the interrogating signal in the visible light from the reader. The transponder recognizes the interrogating signal and generates the responding signal using ultrasonic wave. In experiments, we used 40 kHz ultrasonic wave for the responding signal from the transponder. The maximum read distance was about 3.4 m when the transponder was exposed to the reader light of 24W LED array.

Design and Analysis of RF Smart Card System (RF-ID 스마트 카드 시스템의 설계 및 분석)

  • 양경록;진인수;류형선;김양모
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.203-206
    • /
    • 2000
  • Depending upon the existence of the battery, transponder is divided into active and passive transponder. The passive transponder operates without the inner battery and so has no limitation in its operating range and life time. But the power consumption in the smartcard should be low. In this paper, the analysis and design of the passive smartcard system oerated at 125kHz is presented and is confirmed by simulation and experiment.

  • PDF

A Passive Visible Light Transponder Using an LED for an Optical Transceiver (LED를 광송수신 소자로 사용한 수동형 가시광 트랜스폰더)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.232-238
    • /
    • 2015
  • In this paper, we introduce a passive transponder in which an LED is used for both a light transmitter and a receiver, and a solar cell is used for supplying power to the all devices in the transponder. The LED in the transponder operates as a photodetector in the receiving mode, and acts as a light source in the transmitting mode. The current responsivity of the LED detector was measured to be in the order of $10^{-4}A/W$, and the receiving bandwidth with a load resistance of $10k{\Omega}$ was about 10 to 30 kHz. Using the LED for an optical transceiver in a VLID transponder, the detection range was about 70 cm when the transponder was illuminated by the visible light from a $3{\times}3$ LED array in a reader.

Design and Implementation of a RFID Transponder Chip using CMOS Process (CMOS 공정을 이용한 무선인식 송수신 집적회로의 설계 및 제작)

  • 신봉조;박근형
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.881-886
    • /
    • 2003
  • This paper describes the design and implementation of a passive transponder chip for RFID applications. Passive transponders do not have their own power supply, and therefore all power required for the operation of a passive transponder must be drawn from the field of the reader. The designed transponder consists of a full wave rectifier to generate a dc supply voltage, a 128-bit mask ROM to store the information, and Manchester coding and load modulation circuits to be used for transmitting the information from the transponder to the reader. The transponder with a size 410 x 900 ${\mu}$m$^2$ has been fabricated using 0.65 ${\mu}$m 2-poly, 2-metal CMOS process. The measurement results show the data transmission rate of 3.9 kbps at RF frequency 125 kHz.

Design and analysis of Power supply module in the low power passive transponder (저전력 패시브 트랜스폰더의 전원 모듈에 대한 설계와 분석)

  • Yang, Kyeong-Rok;Kim, Kwang-Soo;Jin, In-Su;Kim, Jong-Beom;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2647-2649
    • /
    • 1999
  • Electric power system is consisted of power supply and power enable circuit. Power supply provides operating voltage with internal chip. Depending on the operating voltage, power enable circuit provides operating signal, PWREN. Because energy is obtained from signal of external station, passive transponder must have the low power consumption. In this paper, the power supply module of the low power transponder is designed and analyzed.

  • PDF

Study on Thermal Vacuum Test Result of DCAMP by the Analysis of Derating & Gain Control (디지털중계기의 부하경감 및 이득조정기능 분석을 통한 열진공시험결과 성능분석)

  • Jin, Byoung-Il;Ko, Hyun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.72-78
    • /
    • 2015
  • Recently, the usage of the satellite is increased more and more in the areas that are communication, weather, marine, optical, radar etc. The functions of the Satellite are evolving from passive transponder to active transponder by the developing of a technology. Advanced countries in satellites install the DCAMP for increase of bandwidth efficiency, improvement of QoS by interference rejection. DCAMP includes many digital components in order to implement functions. Thus, these kinds of active transponders consume much more power compared to passive transponder and then increase the heat. In this paper, we discuss the TVAC test result of DCAMP in EQM(Engineering Qualification Model) level. The paper shows the test results of digital gain control in order to verify DCAMP status under the TVAC test. In addition, the temperature and heat condition of main components from viewpoint of derating will be treated through the official environment test for qualification.