• Title, Summary, Keyword: PM10

Search Result 22,381, Processing Time 0.127 seconds

An Effectiveness of Simultaneous Measurement of PM10, PM2.5, and PM1.0 Concentrations in Asian Dust and Haze Monitoring

  • Cho, Changbum;Park, Gilun;Kim, Baekjo
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.651-666
    • /
    • 2013
  • This study introduces a novel approach to the differentiation of two phenomena, Asian Dust and haze, which are extremely difficult to distinguish based solely on comparisons of PM10 concentration, through use of the Optical Particle Counter (OPC), which simultaneously generates PM10, PM2.5 and PM1.0 concentration. In the case of Asian Dust, PM10 concentration rose to the exclusion of PM2.5 and PM1.0 concentration. The relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration were below 40%, which is consistent with the conclusion that Asian Dust, as a prime example of the coarse-particle phenomenon, only impacts PM10 concentration, not PM2.5 and PM1.0 concentration. In contrast, PM10, PM2.5 and PM1.0 concentration simultaneously increased with haze. The relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration were generally above 70%. In this case, PM1.0 concentration varies because a haze event consists of secondary aerosol in the fine-mode, and the relative ratios of PM10 and PM2.5 concentration remain intact as these values already subsume PM1.0 concentration. The sequential shift of the peaks in PM10, PM2.5 and PM1.0 concentrations also serve to individually track the transport of coarse-mode versus fine-mode aerosols. The distinction in the relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration in an Asian Dust versus a haze event, when collected on a national or global scale using OPC monitoring networks, provides realistic information on outbreaks and transport of Asian Dust and haze.

A Spatial Distribution Analysis and Time Series Change of PM10 in Seoul City (서울시 PM10 공간분포 분석과 시계열 변화)

  • Jeong, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2014
  • In this study spatial analysis of PM10 was performed to Particulate Materials(PM) less than $10{\mu}m$ in diameter in Seoul city. Because PM10 are responsible for the increasing mortality rate of lung cancer and cardiovascular diseases, spatial distribution of PM10 are special interest in air pollution of Seoul. In this study, spatial analysis of Particulate Materials were monitored by monthly averaged PM10 concentration of 2010, 2011. The monthly spatial patterns of PM10 showed the west area of Seoul(Youngdungpo) higher PM10 concentration than northern part of Seoul in early spring and winter seasons. In the comparison of PM10 concentration distribution patterns in 2010 and 2011, the PM10 concentration of 2011 at Gangnam and Songpa-gu were more increased than yearly averaged patterns of 2010. The distribution patterns of PM10 in Seoul city showed the high concentration PM10 of several areas with Youngdungpo-gu, Gangnam-gu and Cheongnyangni. Therefore we need to establish PM10 management strategy for these area.

Performance Characteristics of PM10 and PM2.5 Samplers with an Advanced Chamber System (챔버 기술 개발을 통한 PM10과 PM2.5 시료채취기의 수행 특성)

  • Kim, Do-Hyeon;Kim, Seon-Hong;Kim, Ji-Hoon;Cho, Seung-Yeon;Park, Ju-Myon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.739-746
    • /
    • 2010
  • The purposes of this study are 1) to develop an advanced chamber system within ${\pm}10%$ of air velocity at the particulate matter (PM) collection area, 2) to research theoretical characteristics of PM10 and PM2.5 samplers, 3) to assess the performance characteristics of PM10 and PM2.5 samplers through chamber experiments. The total six one-hour experiments were conducted using the cornstarch with an mass median aerodynamic diameter (MMAD) of $20\;{\mu}m$ and an geometric standard deviation of 2.0 at the two different air velocity conditions of 0.67 m/s and 2.15 m/s in the chamber. The aerosol samplers used in the present study are one APM PM10 and one PM2.5 samplers accordance with the US federal reference methods and specially designed three mini-volume aerosol samplers (two for PM10 and one for PM2.5). The overall results indicate that PM10 and PM2.5 mini-volume samplers need correction factors of 0.25 and 0.39 respectively when APM PM samplers considered as reference samplers and there is significant difference between two mini-volume aerosol samplers when a two-way analysis of variance is tested using the measured PM10 mass concentrations. The PM10 and PM2.5 samplers with the cutpoints and slopes (PM10: $10{\pm}0.5\;{\mu}m$ and $1.5{\pm}0.1$, PM2.5: $2.5{\pm}0.2\;{\mu}m$ and $1.3{\pm}0.03$) theoretically collect the ranges of 86~114% and 64~152% considering the cornstarch characteristics used in this research. Furthermore, the calculated mass concentrations of PM samplers are higher than the ideal mass concentrations when the airborne MMADs for the cornstarch used are smaller than the cutpoints of PM samplers and the PM samplers collected less PM in another case. The chamber experiment also showed that PM10 and PM2.5 samplers had the bigger collection ranges of 37~158% and 55~149% than the theocratical calculated mass concentration ranges and the relatively similar mass concentration ranges were measured at the air velocity of 2.15 m/s comparing with the 0.67 m/s.

Characteristics of Metallic and Ionic Concentrations in PM10 and PM2.5 in Busan (부산지역 PM10과 PM2.5 중의 금속 농도와 이온농도 특성)

  • Jeon, Byung-Il;Hwang, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.819-827
    • /
    • 2014
  • This study analyzes the chemical composition of metallic elements and water-soluble ions in $PM_{10}$ and $PM_{2.5}$. $PM_{10}$ and $PM_{2.5}$ concentrations in Busan during 2010-2012 were $97.2{\pm}67.5$ and $67.5{\pm}32.8{\mu}g/m^3$, respectively, and the mean $PM_{2.5}/PM_{10}$ concentration ratio was 0.73. The contribution rate of water-soluble ions to $PM_{10}$ ranged from 29.0% to 58.6%(a mean of 38.6%) and that to $PM_{2.5}$ ranged from 33.9% to 58.4%(a mean of 43.1%). The contribution rate of sea salt to $PM_{10}$ was 13.9% for 2011 and 9.7% for 2012, while that to $PM_{2.5}$ was 17.4% for 2011 and 10.1% for 2012. $PM_{10}$ concentration during Asian dust events was $334.3{\mu}g/m^3$ and $113.3{\mu}g/m^3$ during non-Asian dust events, and the $PM_{10}$ concentration ratio of Asian Dust/Non Asian dust was 2.95. On the other hand, the $PM_{2.5}$ concentration in Asian dust was $157.4{\mu}g/m^3$ and $83.2{\mu}g/m^3$ in Non Asian dust, and the $PM_{2.5}$ concentration ratio of Asian Dust/Non Asian dust was 1.89, which was lower than that of $PM_{10}$.

Spaciotemporal Variation of PM10 and PM2.5 Concentration for 2015 to 2018 in Busan (부산지역 최근 4년간(2015~2018년) PM10과 PM2.5농도의 시·공간적 변화 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.749-760
    • /
    • 2020
  • This study investigates the characteristics of diurnal, seasonal, and weekly roadside and residential concentrations of PM10 and PM2.5 in Busan, as well as relationship with meteorological phenomenon. Annual mean PM10 and PM2.5 concentrations in Busan were 44.2 ㎍/㎥ and 25.3 ㎍/㎥, respectively. The PM2.5/PM10 concentration ratio was 0.58. Diurnal variations of PM10 and PM2.5 concentrations in Busan were categorized into three types, depending on the number of peaks and times at which the peaks occurred. Roadside PM10 concentration was highest on Saturday and lowest on Friday. Residential PM10 concentration was highest on Monday and lowest on Friday. Residential PM2.5 concentration was highest on Monday and Tuesday and lowest on Friday. PM10 and PM2.5 concentrations were highest on Asian dust and haze, respectively. The results indicate that understanding the spaciotemporal variation of fine particles could provide insights into establishing a strategy to control urban air quality.

Spatial Information Application Case for Appropriate Location Assessment of PM10 Observation Network in Seoul City (서울시 미세먼지 관측망 위치 적정성 평가를 위한 공간정보 활용방안)

  • Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.175-184
    • /
    • 2017
  • Recently, PM10 is becoming a main issue in Korea because it causes a variety of diseases, such as respiratory and ophthalmologic diseases. This research studied to spatial information application cases for evaluating the feasibility of the location for PM10 observation stations utilizing Geogrphic Information System(GIS) spatial analysis. The spatial Information application cases for optimal location assessment were investigated to properly manage PM10 observation stations which are closely related with public spatial data and health care. There are 31 PM10 observation stations in Seoul city and the observed PM10 data at these stations were utilized to understand the overall assessment of PM10 stations to properly manage using interpolation methods. The estimated PM10 using Inverse Distance Weighted(IDW) and Kriging techniques and the map of PM10 concentrations of monitoring stations in Seoul city were compared with public spatial data such as precipitation, floating population, elementary school location. On the basis of yearly, seasonal and daily PM10 concentrations were used to evaluate the feasibility analysis and the location of current PM10 monitoring stations. The estimated PM10 concentrations were compared with floating population and calculated 2015 PM10 distribution data using zonal statistical methods. The national spatial data could be used to analyze the PM10 pollution distribution and additional determination of PM10 monitoring sites. It is further suggested that the spatial evaluation of national spatial data can be used to determine new location of PM10 monitoring stations.

The Characterization of PM, PM10, and PM2.5 from Stationary Sources (고정배출원의 먼지 크기별 (PM, PM10, PM2.5) 배출 특성 연구)

  • Kim, JongHo;Hwang, InJo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.6
    • /
    • pp.603-612
    • /
    • 2016
  • The objective of this study was to estimate the emission characteristics for PM, $PM_{10}$, and $PM_{2.5}$ in the various stationary sources. The particulate matters collected in the various stationary sources such as power plants (Coal and B-C oil), incinerators(municipal and industrial waste), and glass furnaces. The PM and $PM_{10}$, PM and $PM_{2.5}$, $PM_{10}$ and $PM_{2.5}$ samples were collected using the cyclone type $PM_{10}$, $PM_{2.5}$ samplers and 30 species(19 inorganic species, 9 ionic species, OC and EC) were analyzed by ICP, IC, and TOR/IMPROVE methods. The mass concentrations of PM, $PM_{10}$, $PM_{2.5}$ from nine stationary sources ranged $0.63{\sim}9.58mg/Sm^3$, $0.26{\sim}7.47mg/Sm^3$ and $0.13{\sim}6.34mg/Sm^3$, respectively. The level of $PM_{10}$, $PM_{2.5}$ portion in PM calculated 0.63~0.99, 0.38~0.94, respectively. In the case of emission trend for species, power plant showed high concentrations for Al, Mg, Na, Si, V and $SO_4{^{2-}}$, respectively. Also, Ca, Fe, K, Si, $Cl^-$, and $K^+$ showed high in incinerator. In the case of glass furnace, Na, Pb, K, Si, $Na^+$ and $SO_4{^{2-}}$ represented high concentrations. Power plant showed higher EC/OC concentrations than other sampling sites. These results suggest the possible role for complement establishment process of emission inventory and emission management for PM.

The Variation Analysis on Spatial Distribution of PM10 and PM2.5 in Seoul (서울시 PM10과 PM2.5의 공간적 분포 변이분석)

  • Jeong, Jongchul
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.717-726
    • /
    • 2018
  • PM(Particulate Matter) cause serious diseases of air pollution. Most of the studies have analyzed local distribution trends using satellite images or modeling techniques. However,the method using the spatial interpolation method based on the meteorological value is insufficient in Korea. In this study, monthly spatial distribution of $PM_{10}$ and $PM_{2.5}$ in January, February, March, and April of 2018 Seoul Metropolitan City were analyzed based on 39 PM monitoring networks. In addition, a distribution map showing the difference between $PM_{10}$ and $PM_{2.5}$ was based on the distribution obtained through this study. The regions of high $PM_{10}$ and $PM_{2.5}$ emissions were selected. In addition, the correlation between $PM_{10}$ and $PM_{2.5}$ was confirmed through the distribution map. This study analyzed the spatial distribution variation results of analyzing $PM_{10}$ and $PM_{2.5}$ in Seoulthrough spatial analysis technique. As a result of this study, it was confirmed that $PM_{10}$ shows high measured value on the roadside measurement station.

Impact of Yellow Dust Transport from Gobi Desert on Fractional Ratio and Correlations of Temporal PM10, PM2.5, PM1 at Gangneung City in Fall (고비사막으로부터 황사수송이 가을에 강릉시의 시간별 PM10, PM2.5, PM1 간의 농도차비와 상관관계에 미치는 영향)

  • Lee, Mi-Sook;Chung, Jin-Do
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • Hourly concentrations of $PM_1$, $PM_{2.5}$ and $PM_{10}$, were investigated at Gangneung city in the Korean east coast on 0000LST October 26~1800LST October 29, 2003. Before the intrusion of Yellow dust from Gobi Desert, $PM_{10}$($PM_{2.5}$, $PM_1$) concentration was generally low, more or less than 20 (10, 5) ${\mu}g/m^3$, and higher PM concentration was found at 0900LST at the beginning time of office hour and their maximum ones at 1700LST around its ending time. As correlation coefficient of $PM_{10}$ and $PM_{2.5}$($PM_{2.5}$ and $PM_1$, and $PM_{10}$ and $PM_1$) was very high with 0.90(0.99, 0.84), and fractional ratios of $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 1.37~3.39(0.23~0.54), respectively. It implied that local $PM_{10}$ concentration could be greatly affected by particulate matters of sizes larger than $2.5{\mu}m$, and $PM_{2.5}$ concentration could be by particulate matters of sizes smaller than $2.5{\mu}m$. During the dust intrusion, maximum concentration of $PM_{10}$($PM_{2.5}$, $PM_1$) reached 154.57(93.19, 76.05) ${\mu}g/m^3$ with 3.8(3.4, 14.1) times higher concentration than before the dust intrusion. As correlation coefficient of $PM_{10}$ and $PM_{2.5}$(vice verse, $PM_{2.5}$, $PM_1$) was almost perfect high with 0.98(1.00, 0.97) and fractional ratios of $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 0.48~1.25(0.16~0.37), local $PM_{10}$ concentration could be major affected by particulates smaller than both $2.5{\mu}m$ and $1{\mu}m$ (fine particulate), opposite to ones before the dust intrusion. After the ending of dust intrusion, as its coefficient of 0.23(0.81, - 0.36) was very low, except the case of $PM_{2.5}$ and $PM_1$ and $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 1.13~1.91(0.29~1.90), concentrations of coarse particulates larger than $2.5{\mu}m$ greatly contributed to $PM_{10}$ concentration, again. For a whole period, as the correlation coefficients of $PM_{10}$, $PM_{2.5}$, $PM_1$ were very high with 0.94, 1.00 and 0.92, reliable regression equations among PM concentrations were suggested.

Characteristics of Spacio-Temporal Variation for PM10 and PM2.5 Concentration in Busan (부산지역 PM10과 PM2.5농도의 시간 및 공간적 변화 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.1013-1023
    • /
    • 2010
  • The purpose of this study was to analyze the characteristics of spacio-temporal variation for $PM_{10}$ and $PM_{2.5}$ concentration in Busan. $PM_{10}$ concentration has been reduced for the past three year and exceeded $50\;{\mu}g/m^3$ of the national standard for $PM_{10}$. $PM_{2.5}$ concentration showed gradual decrease or stagnant trends and exceeded the U.S. EPA standard. Seasonal analysis of $PM_{10}$ and $PM_{2.5}$ suggested spring>winter>fall>summer(by Asian dust) and winter>spring>summerenlifall(by anthropogenic effect) in the order of high concentration, respectively. Characterization of diurnal variations suggests that $PM_{10}$ levels at all the three sites consistently exhibited a peak at 1000LST and $PM_{2.5}$ at Jangrimdong experienced the typical $PM_{2.5}$ diurnal trends such that a peak was observed in the morning and the lowest level at 1400LST. In the case of seasonal trends, the $PM_{2.5}/PM_{10}$ ratio was in the order of summer>winter>fall>spring at all the study sites, with a note that spring bears the lowest concentration. During AD events, $PM_{10}$ concentration exhibited the highest level at Jangrimdong and the lowest level at Joadong. And $PM_{2.5}/PM_{10}$ ratio in AD was 0.16~0.28.