• Title, Summary, Keyword: PI3K/AKT

Search Result 247, Processing Time 0.038 seconds

Opisthorchis viverrini Infection Activates the PI3K/AKT/PTEN and Wnt/β-catenin Signaling Pathways in a Cholangiocarcinogenesis Model

  • Yothaisong, Supak;Thanee, Malinee;Namwat, Nisana;Yongvanit, Puangrat;Boonmars, Thidarut;Puapairoj, Anucha;Loilome, Watcharin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10463-10468
    • /
    • 2015
  • Opisthorchis viverrini (Ov) infection is the major etiological factor for cholangiocarcinoma (CCA), especially in northeast Thailand. We have previously reported significant involvement of PI3K/AKT/PTEN and $Wnt/{\beta}$-catenin in human CCA tissues. The present study, therefore, examined the expression and activation of PI3K/AKT/PTEN and $Wnt/{\beta}$-catenin signaling components during Ov-induced cholangiocarcinogenesis in a hamster animal model. Hamsters were divided into two groups; non-treated and Ov plus NDMA treated. The results of immunohistochemical staining showed an upregulation of PI3K/AKT signaling as determined by elevated expression of the $p85{\alpha}$-regulatory and $p110{\alpha}$-catalytic subunits of PI3K as well as increased expression and activation of AKT during cholangiocarcinogenesis. Interestingly, the staining intensity of activated AKT (p-AKT) increased in the apical regions of the bile ducts and strong staining was detected where the liver fluke resides. Moreover, PTEN, a negative regulator of PI3K/AKT, was suppressed by decreased expression and increased phosphorylation during cholangiocarcinogenesis. We also detected upregulation of $Wnt/{\beta}$-catenin signaling as determined by increased positive staining of Wnt3, Wnt3a, Wnt5a, Wnt7b and ${\beta}$-catenin, corresponded with the period of cholangiocarcinogenesis. Furthermore, nuclear staining of ${\beta}$-catenin was observed in CCA tissues. Our results suggest the liver fluke infection causes chronic inflammatory conditions which lead to upregulation of the PI3K/AKT and $Wnt/{\beta}$-catenin signaling pathways which may drive CCA carcinogenesis. These results provide useful information for drug development, prevention and treatment of CCA.

Odorant Stimulation Promotes Survival of Rodent Olfactory Receptor Neurons via PI3K/Akt Activation and Bcl-2 Expression

  • Kim, So Yeun;Yoo, Seung-Jun;Ronnett, Gabriele V;Kim, Eun-Kyoung;Moon, Cheil
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.535-539
    • /
    • 2015
  • Olfactory stimulation activates multiple signaling cascades in order to mediate activity-driven changes in gene expression that promote neuronal survival. To date, the mechanisms involved in activity-dependent olfactory neuronal survival have yet to be fully elucidated. In the current study, we observed that olfactory sensory stimulation, which caused neuronal activation, promoted activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt pathway and the expression of Bcl-2, which were responsible for olfactory receptor neuron (ORN) survival. We demonstrated that Bcl-2 expression increased after odorant stimulation both in vivo and in vitro. We also showed that odorant stimulation activated Akt, and that Akt activation was completely blocked by incubation with both a PI3K inhibitor (LY294002) and Akt1 small interfering RNA. Moreover, blocking the PI3K/Akt pathway diminished the odorantinduced Bcl-2 expression, as well as the effects on odorant-induced ORN survival. A temporal difference was noted between the activation of Akt1 and the expression of Bcl-2 following odorant stimulation. Blocking the PI3K/Akt pathway did not affect ORN survival in the time range prior to the increase in Bcl-2 expression, implying that these two events, activation of the PI3K pathway and Bcl-2 induction, were tightly connected to promote post-translational ORN survival. Collectively, our results indicated that olfactory activity activated PI3K/Akt, induced Bcl-2, and promoted long term ORN survival as a result.

Potential Targets for Prevention of Colorectal Cancer: a Focus on PI3K/Akt/mTOR and Wnt Pathways

  • Pandurangan, Ashok Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2201-2205
    • /
    • 2013
  • Colorectal cancer (CRC) is one of the most common cancers in many parts of the world. Its development is a multi-step process involving three distinct stages, initiation that alters the molecular message of a normal cell, followed by promotion and progression that ultimately generates a phenotypically altered transformed malignant cell. Reports have suggested an association of the phosphoinositide-3-kinase (PI3K)/Akt pathway with colon tumorigenesis. Activation of Akt signaling and impaired expression of phosphatase and tensin homolog (PTEN) (a negative regulator of Akt) has been reported in 60-70% of human colon cancers and inhibitors of PI3K/Akt signaling have been suggested as potential therapeutic agents. Around 80% of human colon tumors possess mutations in the APC gene and half of the remainder feature ${\beta}$-catenin gene mutations which affect downstream signaling of the PI3K/Akt pathway. In recent years, there has been a great focus in targeting these signaling pathways, with natural and synthetic drugs reducing the tumor burden in different experiment models. In this review we survey the role of PI3K/Akt/mTOR and Wnt signaling in CRC.

Inhibition of PI3K/AKT Signaling Pathway Enhances Cordycepin-Induced Apoptosis in Human Gastric Cancer Cells (인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.835-842
    • /
    • 2016
  • The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.

Melatonin Induces Akt Phosphorylation through Melatonin Receptor- and PI3K-Dependent Pathways in Primary Astrocytes

  • Kong, Pil-Jae;Byun, Jong-Seon;Lim, So-Young;Lee, Jae-Jun;Hong, Sung-Jun;Kwon, Kwang-Jun;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.37-41
    • /
    • 2008
  • Melatonin has been reported to protect neurons from a variety of neurotoxicity. However, the underlying mechanism by which melatonin exerts its neuroprotective property has not yet been clearly understood. We previously demonstrated that melatonin protected kainic acid-induced neuronal cell death in mouse hippocampus, accompanied by sustained activation of Akt, a critical mediator of neuronal survival. To further elucidate the neuroprotective action of melatonin, we examined in the present study the causal mechanism how Akt signaling pathway is regulated by melatonin in a rat primary astrocyte culture model. Melatonin resulted in increased astrocytic Akt phosphorylation, which was significantly decreased with wortmannin, a specific inhibitor of PI3K, suggesting that activation of Akt by melatonin is mediated through the PI3K-Akt signaling pathway. Furthermore, increased Akt activation was also significantly decreased with luzindole, a non-selective melatonin receptor antagonist. As downstream signaling pathway of Akt activation, increased levels of CREB phoshorylation and GDNF expression were observed, which were also attenuated with wortmannin and luzindole. These results strongly suggest that melatonin exerts its neuroprotective property in astrocytes through the activation of plasma membrane receptors and then PI3K-Akt signaling pathway.

MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway

  • Long, Zi-Wen;Wu, Jiang-Hong;Hong, Cai;Wang, Ya-Nong;Zhou, Ye
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.532-544
    • /
    • 2018
  • Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR-374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.

Predictive and Prognostic Significance of p27, Akt, PTEN and PI3K Expression in HER2-Positive Metastatic Breast Cancer

  • Okutur, Kerem;Bassulu, Nuray;Dalar, Levent;Aydin, Kubra;Bozkurt, Mustafa;Pilanci, Kezban Nur;Dogusoy, Gulen Bulbul;Tecimer, Coskun;Mandel, Nil Molinas;Demir, Gokhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2645-2651
    • /
    • 2015
  • Background: The phosphatidylinositol 3'-kinase/Akt (PI3K/Akt) pathway is a key regulator for HER2-overexpressing breast cancer, but data about whether activation of PI3K/Akt is associated with poor prognosis and resistance to trastuzumab therapy is controversial. In this study we investigated predictive and prognostic significance of expression of p27, Akt, PTEN and PI3K, which are components of the PI3K/Akt signaling pathway, in HER2-positive metastatic breast cancer (MBC), retrospectively. Materials and Methods: Fifty-four HER2-positive MBC patients who had received first-line trastuzumab-based therapy were recruited for the study group. All of the patient's breast tissue samples were examined for p27 and Akt expression. In addition, twenty-five patients with sufficient amount of tumor tissue were also examined for PTEN and PI3K expression. p27, Akt, PTEN and PI3K were evaluated by immunohistochemistry and their relationship with patient demographic features, tumor characteristics, response to trastuzumab-based treatment and survival outcomes were analyzed. Results: p27, Akt, PTEN and PI3K were positive in 25.9%, 70.4%, 24% and 96% of the cases, respectively. Nomne were significantly associated with response to trastuzumab and time to progression (TTP). A trend toward statistical significance for longer overall survival (OS) was found for PTEN-positive patients (p=0.058); there was no significant relationship between the other immunohistochemical variables and OS. When we analyzed groups regarding co-expression, the PTEN-negative/Akt-negative group had a significantly lower objective response rate (ORR) (20% vs 80%, p=0.023) and the PTEN-negative/p27-negative and PTEN-negative/Akt-negative groups had significantly lower median OS compared to other patients (26.4 months vs 76.1 months, p=0.005 and 25.6 months vs 52.0 months, p=0.007, respectively). Conclusions: p27, Akt, PTEN and PI3K expression is not statistically significantly associated with ORR, TTP and OS, individually. However, the combined evaluation of p27, Akt and PTEN could be helpful to predict the response to trastuzumab-based therapy and prognosis in HER2-positive MBC.

The Inhibitory Effects of Cordycepin on Phosphoproteins including PI3K, Akt, and p38 (PI3K, Akt, p38을 포함한 인산화단백질에 대한 Cordycepin의 억제효과)

  • Kwon, Hyuk-Woo;Lee, Dong-Ha
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.2
    • /
    • pp.99-107
    • /
    • 2017
  • A species of Cordyceps, an ingredient in Chinese traditional medicine well-known for its major component, cordycepin (3'-deoxyadenosine), has been known to have antiplatelet effects; however, its effects on regulation of phosphoprotein have not been fully elucidated. In this study, we investigated how cordycepin regulates the phosphoprotein, including phosphatidylinositol 3-kinase (PI3K)/Akt and p38, to inhibit platelet aggregation, which are concerned with fibrinogen binding to glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}_3$) and granule secretion in platelets. Our finding suggests that cordycepin inhibits collagen-induced platelet aggregation with $261.1{\mu}M$ of $IC_{50}$ and also inhibits fibrinogen binding to ${\alpha}IIb/{\beta}_3$ by a suppression of PI3K/Akt phosphorylation in a dose dependent manner. In addition, cordycepin further showed to inhibit collagen-induced p38 phosphorylation, reducing granule secretion (i.e. ATP- and serotonin-release) and thromboxane $A_2$ ($TXA_2$) production without regulating cyclooxygenase-1 (COX-1) and thromboxane A synthase (TXAS) activities, as well as phospholipase $C-{\gamma}_2$ ($PLC-{\gamma}_2$) phosphorylation. In conclusion, these results demonstrate that cordycepin-mediated antiplatelet effects were due to the inhibition of fibrinogen binding to ${\alpha}IIb/{\beta}_3$ via the suppression of PI3K/Akt phosphorylation and inhibition of granule secretion & $TXA_2$ production by suppressing p38 phosphorylation. These results strongly indicate that cordycepin might have therapeutic or preventive potential for platelet aggregation-mediated disorders, regulating the phosphoprotein, including PI3K/Akt and p38.

Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor ${\beta}$-mediated phosphatidylinositol-3 kinase/Akt signaling

  • Nguyen, Cuong Thach;Luong, Truc Thanh;Kim, Gyu-Lee;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.69-75
    • /
    • 2015
  • Background: Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-${\beta}$ signaling. Methods: Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to $H_2O_2$. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined byWestern blot analysis. The roles of ER-${\beta}$, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results: Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-${\beta}$, PI3K, and p-Akt expression. Conversely, ER-${\beta}$ inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion: Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-${\beta}$ expression.

Activation of Phosphatidylinositol 3-kinase(PI3K) is Required for Invasiveness and Motility in H-ras MCE10A Cells

  • Shin, Il-Chung;Aree Moon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • /
    • pp.103-103
    • /
    • 2001
  • 인간유방상피세포에서 H-ras가 침윤성과 세포 이동성을 유도한다는 것을 이 전연구에서 밝혔다. Phosphatidylinositol 3-kinase(PI3K)는 세포 이동성에서 중요한 역할을 하는 것으로 보고되고 있다. 본 연구에서 인간유방상피세포인 MCF10A에서 H-ras에 의해 유도된 침윤성에 PI3K가 어떠한 영향을 미치는지 살펴보고자 하였다. PI3K의 활성은 PI3K의 downstream molecule인 Akt의 인산화를 Western blot으로 확인하였다. Akt는 MCF10A, H-ras, N-ras MCF10A 세포에서 같은 정도로 발현되는 반면, 인산화된 Akt는 MCF10A 세포에 비해 H-ras MCF10A 세포와 N-ras MCF10A 세포에서 현저히 높게 나타났다. 이상의 결과로서 H-ras, N-ras 둘 다 PI3K를 활성화시키며, 침윤성과 세포이동성이 없는 N-ras MCF10A 세포에서도 PI3K가 활성화되었으므로, PI3K의 활성은 세포침윤성과 이동성을 유도하는데에 있어서 충분하지는 않음을 말해준다. PI3K의 저해제인 LY294002와 wortmannin을 세포에 처리하였을 때 세포침윤성과 이동성이 유의성 있게 감소되었다. 이상의 결과는 MCF10A 세포의 침윤성과 이동설에 있어서 PI3K의 활성이 충분하지는 않지만 반드시 필요하다는 것을 알 수 있었다.

  • PDF