• Title, Summary, Keyword: PD

Search Result 4,653, Processing Time 0.054 seconds

Phase Equilibria of the System Pd-Sb-Te and Its Geological Implications (팔라듐-안티몬-테루르 계(系)의 상평형(相平衡)과 지질학적(地質學的) 의의(意義))

  • Kim, Won-Sa;Chao, George Y.
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.327-335
    • /
    • 1993
  • Phase relations in the system Pd-Sb-Te were investigated at $1000^{\circ}$, $800^{\circ}$, and $600^{\circ}C$, using the sealed-capsule technique; the quenched products were studied by reflected light microscopy, X-ray diffraction, and electron microprobe analysis. At $1000^{\circ}C$, the solid phases Pd, $Pd_{20}Sb_7$, $Pd_8Sb_3$, $Pd_{31}Sb_{12}$, and $Pd_5Sb_2$ are stable with a liquid phase that occupies most of the isothermal diagram. Additional solid phases at $800^{\circ}C$ are $Pd_5Sb_3$, PdSb, $Pd_8Te_3$, $Pd_7Te_3$, and a continuous $Pd_{20}Te_7-Pd_{20}Sb_7$ solid solution becomes stable. At $600^{\circ}$, $PdSb_2$, $Pd_{17}Te_4$, $Pd_9Te_4$, PdTe, $PdTe_2$, $Sb_2Te_3$, and Sb and continuous PdSb-PdTe and $PdTe-PdTe_2$ solid solutions are stable. All the solid phases exhibit solid solution, mainly by substitution between Sb and Te to an extent that varies with temperature of formation. The maximum substitution (at.%) of Te for Sb in the Pd-Sb phases is: 44.3 in $Pd_8Sb_3$, 52.0 in $Pd_{31}Sb_{12}$, 46.2 in $Pd_5Sb_2$ at $800^{\circ}C$; 15.3 in $Pd_5Sb_3$, 68.3 in $PdSb_2$ at $600^{\circ}C$. The maximum substitution (at.%) of Sb for Te in the Pd-Te phases is 34.5 in $Pd_5Sb_3$ at $800^{\circ}C$, and 41.6 in $Pd_7Te_3$, 5.2 in $Pd_{17}T_4$, 12.4 in $Pd_9Te_4$, and 19.1 in $PdTe_2$ at $600^{\circ}C$. Physical properties and X-ray data of the synthetic $Pd_9Te_4$, PdTe, $PdTe_2$, $Pd_8Sb_3$, PdSb, and $Sb_2Te_3$ correspond very well with those of telluropalladinite, kotulskite, merenskyite, mertieite II, sudburyite, and tellurantimony, respectively. Because X-ray powder diffraction data consistently reveal a 310 peak ($2.035{\AA}$), the $PdSb_2$ phase is most probably of cubic structure with space group $P2_13$. The X-ray powder pattern of a phase with PdSbTe composition, synthesized at $600^{\circ}C$, compares well with that of testibipalladite. Therefore, testibiopalladite may be a member of the $PdSb_2-Pd(Sb_{0.32}Te_{0.68})$ solid solution series which is cubic and $P2_13$ in symmetry. Thus the ideal fonnula for testibiopalladite, presently PdSbTe, must be revised to PdTe(Sb, Te). Borovskite($pd_3SbTe_4$) has not been found in the synthetic system in the temperature range $1000^{\circ}-600^{\circ}C$.

  • PDF

The Reactivity of Antiserum Raised against Native Glucose-6-phosphate Dehydrogenase with Denatured Glucose-6-phosphate Dehydrogenase in Competitive ELISA

  • Kim, Moon-Hee
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.519-523
    • /
    • 1998
  • We have previously reported that anti-glucose-6-phosphate dehydrogenase (G6PD) serum raised against native G6PD (nG6PD) enzyme recognized nG6PD antigen poorly in competitive enzyme-linked immunosorbent assay (ELISA) (Kim, 1997). In the present study, we investigated whether anti-G6PD serum raised against nG6PD can react with denatured G6PD effectively in competitive ELISA. We used partially active G6PD (paG6PD) by repeated freeze-thawing or SDS-denatured G6PD (SDS-G6PD) as both immobilized and soluble antigens, and anti-G6PD serum raised against nG6PD for competitive ELISA. The polystyrene cuvettes coated with either paG6PD or SDS-G6PD were challenged with a mixture of a limiting amount of anti-G6PD serum and various doses of paG6PD or SDS-G6PD as competitors, followed by incubation with alkaline phosphatase-anti-IgG conjugate. The competitive ELISA with paG6PD or SDS-G6PD antigen exhibited the sigmoidal dose-response curve characteristic of competition immunoassays. Furthermore, Triton-denatured G6PD (Triton-G6PD) was used in competitive ELISA. The paG6PD, SDS-G6PD, or Triton-G6PD used as competitors increased the inhibition of antibody binding to immobilized either of nG6PD or denatured G6PD compared with nG6PD competitor. The inhibition by denatured G6PD competitors was more pronounced at high competitor concentrations than at low counterparts. We conclude that anti-G6PD serum raised against nG6PD can effectively react with denatured G6PD in competitive ELISA and that our anti-G6PD serum recognizes denatured enzymes better than active enzymes.

  • PDF

Study of the formation of Pd-silicide with x-ray photoelectron spectroscopy (광전자분광법을 이용한 Pd-실리사이드의 형성 연구)

  • 조은진;최일상;이한길;황찬용
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.165-171
    • /
    • 1997
  • If the thickness of Pd deposited is larger than 9$\AA$, its phase is $Pd_3Si$. This phase is followed by pure Pd phase with further deposition of Pd. Also, when the thickness of Pd deposited on top of Si(111) is larger than 1$\AA$, the phase of Pd-silicide formed is found to be Pd2Si. The full width at half maximum of Pd 3d core-levels increases with decreasing of Pd film thickness at low coverages ($\leq0.5\AA$). This is due to the formation of additional phase of Pd silicide, i.e. PdSi, in addition to $Pd_2Si$.

  • PDF

Recovery of Palladium (Pd) from Spent Catalyst by Dry and Wet Method and Re-preparation of Pd/C Catalyst from Recovered Pd (폐촉매로부터 Pd회수 및 이를 이용한 Pd/C 촉매 재제조 기술 개발)

  • Kim, Ji Sun;Kwon, Ji Soo;Baek, Jae Ho;Lee, Man sig
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.376-381
    • /
    • 2018
  • The purpose of this study is to investigate and optimize an effectiveness process for the recovery of Pd from the spent Pd/C catalyst by the process of hydrogenation of maleic anhydride over Pd/C. Pd solution recovered from Pd/C catalyst was used to prepare Pd/C catalysts. Their characteristics were compared to those of Pd/C catalyst prepared by using a reagent grade precursor solution. Pd in the spent catalyst was leached by the modified process with dry and wet methods to obtain the high recovery ratio of Pd. The burn-out of carbon in the spent Pd/C catalyst was carried out in the rage of $600-900^{\circ}C$. Pd content of carbonized catalyst was confirmed by XRF and ICP. Pd was extracted from carbonized spent catalysts with acid solutions of 1,2 and 4 M HCl at a leaching temperature of $90^{\circ}C$ for 2 h. The high recovery ratio of Pd was shown as 92.4% that leached in 4 M HCl. Also Pd/C catalysts were prepared by using the leached solution and the reagent grade of $H_2PdCl_4$ as a precursor solution and the characteristics were analyzed by XRD, CO-chemisorption and FE-TEM. As a result, the dispersion of the catalyst prepared by using the leached solution was 34.6%, which was found to be equal to or more than that of the Pd/C catalyst prepared by the reagent grade precursor solution.

Competitive Enzyme-Linked Immunosorbent Assay for Glucose-6-Phosphate Dehydrogenase

  • Kim, Moon-Hee
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.326-331
    • /
    • 1997
  • To construct a competitive ELISA standard curve for the detection of glucose-6-phosphate debydrogenase (G6PD), we used highly purified native G6PD (nG6PD) as both immobilized and soluble antigens and anti-G6PD serum raised against nG6PD as antibody. The polystyrene cuvettes coated with nG6PD were challenged with a mixture of a limiting amount of anti-G6PD serum and various doses of nG6PD as competitors followed by incubation with alkaline phosphatase-anti-IgG conjugate. The competitive ELISA did not exhibit the typical sigmoidal dose-response curve characteristic of competition immunoassays under the optimal concentrations of antigen and antibody. The soluble nG6PD used as competitor failed to effectively inhibit the binding of antibodies to the immobilized nG6PD. The addition of NADP, a cofactor of G6PD enzyme, to coating buffer used for immobilizing nG6PD to the cuvettes and PBS-Tween-BSA buffer for diluting competitors did not improve the inhibition of antibody binding to immobilized nG6PD by soluble n/G6PD. The addition of BSA to coating buffer did not increase inhibition, either. Surprisingly, when partially active G6PD (paG6PD), obtained by repeated freeze-thawing, was used as competitor, the antibody binding to either immobilized nG6PD or immobilized paG6PD was inhibited 49-58%. We conclude that an effective competitive ELISA system with nG6PD enzyme and anti-G6PD serum for the detection of G6PD may not be established due to the poor inhibition of antibody binding to immobilized nG6PD by soluble nG6PD under the present assay conditions and that the inhibition may be improved by using an inactivated enzyme as competitor regardless of the type of immobilized antigen used. These results imply that the immobilized nG6PD may undergo denaturation upon binding to the polystyrene cuvettes and that our anti-G6PD serum may recognize denatured enzyme better than active enzyme.

  • PDF

High Catalytic Activity and Recyclability of Graphene Oxide Based Palladium Nanocomposites in Sonogashira Reaction

  • Kim, Bo Hyun;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.139.1-139.1
    • /
    • 2013
  • Graphene and graphene oxide (GO) have been modified with palladium nanoparticles (Pd NPs) to develop high performance catalysts for the Sonogashira cross coupling reaction. To understand catalytic performance of Pd NPs on graphene (Pd/G) and Pd NPs on GO (Pd/GO), we monitored their morphological and electronic structural changes before/after Sonogashira reaction using FT-IR, XRD, XPS, and XAFS. Here, we demonstrate that both Pd/G and Pd/GO show high catalytic efficiency toward the Sonogashira reaction, but only Pd/GO revealed excellent recyclability. The remarkable catalytic efficiency of both catalysts is attributed to the high degree of the Pd NP dispersions on supports and thus smaller Pd NPs can provide highly reactive low coordinated Pd atoms. However, we attributed the excellent recyclability of Pd/GO to the presence of oxygen functionalities on GO, which can provide nucleation sites for the detached Pd atoms during the Sonogashira reaction and prevent agglomeration of the Pd NPs since the oxygen functional groups are very reactive to mobile Pd adatoms.

  • PDF

Geometrical Characteristics and Atomic Charge Variations of Pd(II) Complexes [Pd(L)Cl2] with an Axial (Pd·O) Interaction

  • Park, Jong-Keun;Cho, Yong-Guk;Lee, Shim-Sung;Kim, Bong-Gon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.85-89
    • /
    • 2004
  • Geometrical structures of [Pd(L)$Cl_2$] with oxathia macrocycles have been calculated using ab initio secondorder Moller-Plesset (MP2) and Density Functional Theory (DFT) methods with triple zeta plus polarization (TZP) basis set level. In optimized Pd(L)$Cl_2$ complexes, Pd(II) locates at the center surrounded by a square planar array of two sulfurs on an oxathia macrocycle and two chlorides. The endo-Pd(II) complexes with an axial (Pd${\cdots}$O) interaction are more stable than the exo-Pd(II) complexes without the interaction. In the endo-Pd(II) complexes, the atomic charge of the oxygen atom moves to Pd(II) via the axial ($Pd{\cdots}$O) interaction and then, the charge transfer from Pd(II) to the S-atoms occurs stepwise via ${\pi}$-acceptors of the empty d-orbitals.

Pd/Pd3Fe Alloy Catalyst for Enhancing Hydrogen Production Rate from Formic Acid Decomposition: Density Functional Theory Study (개미산 분해 반응에서 수소 생산성 증대를 위한 Pd/Pd3Fe 합금 촉매: 범밀도 함수 이론 연구)

  • Cho, Jinwon;Han, Jonghee;Yoon, Sung Pil;Nam, Suk Woo;Ham, Hyung Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.270-274
    • /
    • 2017
  • Formic acid has been known as one of key sources of hydrogen. Among various monometallic catalysts, hydrogen can be efficiently produced on Pd catalyst. However, the catalytic activity of Pd is gradually reduced by the blocking of active sites by CO, which is formed from the unwanted indirect oxidation of formic acid. One of promising solutions to overcome such issue is the design of alloy catalyst by adding other metal into Pd since alloying effect (such as ligand and strain effect) can increase the chance to mitigate CO poisoning issue. In this study, we have investigated formic acid deposition on the bimetallic $Pd/Pd_3Fe$ core-shell nanocatalyst using DFT (density functional theory) calculation. In comparison to Pd catalyst, the activation energy of formic acid dehydrogenation is greatly reduced on $Pd/Pd_3Fe$ catalyst. In order to understand the importance of alloying effects in catalysis, we decoupled the strain effect from ligand effect. We found that both strain effect and ligand effect reduced the binding energy of HCOO by 0.03 eV and 0.29 eV, respectively, compared to the pure Pd case. Our DFT analysis of electronic structure suggested that such decrease of HCOO binding energy is related to the dramatic reduction of density of state near the fermi level.

Synthesis and Characterization of Tetrathiafulvalene (TTF) and 7,7,8,8-Tetracyanoquinodimethane (TCNQ) Compounds with PdX2(X=CI, NO3and Hexafluoroacetylacetonate)

  • Kim, Young-Inn;Jeong, Chan-Kyou;Lee, Yong-Min;Choi, Sung-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1754-1758
    • /
    • 2002
  • Tetrathiafulvalene(TTF) reacts with $PdCl_2,Pd(NO_3)_2$ and $Pd(hfacac)_2$(hexafluoroacetylacetonate) in ethanol to give $(TTF)_{1.5}PdCl_2$ (1a), $(TTF)_3Pd(NO_3)_2$ (1b) and $(TTF)_4Pd(hfacas)_2$ nd (1c), respectively. $PdCl(TCNQ)_{2.5}{\cdot}CH_3OH(2a)$was obtained from the reaction of $PdCl_2$ with LiTCNQ in methanol via the partial replacement of $Cl^-$ in $PdCl_2$ by $TCNQ^-$anion, whereas the total substitution of the labile $NO_3^-$ in $Pd(NO_3)_2$ yielded pd(TCNQ)·$CH_3OH$ (2b). $Pd(hfacac)_2(TCNQ)_2\cdot3CH_3OH$ (2c) was obtained from $Pd(hfacac)_2$ and LiTCNQ in methanol. The prepared compounds were characterized by spectroscopic (IR, UV, XPS) methods and magnetic (EPR, magnetic susceptibility) studies. The powdered electrical conductivities (${\sigma}_{rt}$) of the prepared compounds at room temperature were about~$10^{-7}S{\cdot}cm^{-1}$. The effective magnetic moments were lass than the spin-only value of one unpaired electron and no EPR signals from Pd metal ions were observed in any of the compounds, indicating that the Pd ions were diamagnetic and the magnetic moments arose from$(TTF)_n$ or $(TCNQ)_n$ moieties. The experimental evidences revealed that the charge transfer had occurred form $(TTF)_n$ moiety to the central Pd metal ion in 1a, 1b and 1c. Thus the TTF donors were ions in 2a and 2b were diamagnetic Pd(II) oxidation state. In contrast, the Pd metal ion was oxidized to Pd(IV) state in 2c as a result of an addition of $TCNQ^-$anion to $Pd(hfacac)_2$ in methanol. The oxidation states of the Pd metal ions were confirmed using the x-ray photoelectron spectroscopy.

Microstructure Observation of Pd-Ga System Dental Alloy for Metal-Ceramic Restorations (치과 도재용 Pd-Ga계 합금의 미세조직 관찰)

  • 김기주;이진형
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.6
    • /
    • pp.537-542
    • /
    • 2000
  • Ga이 함유된 Pd-Ga계 합금은 우수한 기계적 성질, 심미성 및 생체적합성등으로 차세대 치과 도재용 합금으로 주목 받고 있다. 본 연구에서는 상용 77.3%Pd-6.0%Ga계 합금을 원심주조법으로 주조하고, 탈개스, 세라믹소성처리한 후 미세조직을 광학현미경, X-선 회절기, 투과전자현미경으로 관찰하였다. X-선 회절분석 및 투과전자현미경 관찰 결과, Pd고용체와 미세한 석출물에 의해 나타나는 줄무늬를 확인하였다. 공정점 86$0^{\circ}C$에서 5시간 유지시킨 상평형 열처리조건에서는 Pd고용체와 금속간화합물 Pd(sub)2Ga에 해당하는 보다 명확한 제한시야회절도형을 얻었다. 이러한 결과로 77.3%Pd-6.0%Ga계 합금은 Pd고용체와 미세한 구형의 금속간화합물 Pd(sub2)Ga으로 구성되었음을 알 수 있었다.

  • PDF