• Title, Summary, Keyword: PARP-1

Search Result 336, Processing Time 0.035 seconds

Differential Localisation of PARP-1 N-Terminal Fragment in PARP-1+/+ and PARP-1-/- Murine Cells

  • Rajiah, Ida Rachel;Skepper, Jeremy
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.526-531
    • /
    • 2014
  • Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 Nterminal fragment encompassing NLS in PARP-$1^{+/+}$ and PARP-$1^{-/-}$ mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-$1^{+/+}$ cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-$1^{-/-}$ cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.

PARP1 Impedes SIRT1-Mediated Autophagy during Degeneration of the Retinal Pigment Epithelium under Oxidative Stress

  • Jang, Ki-Hong;Hwang, Yeseong;Kim, Eunhee
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.632-644
    • /
    • 2020
  • The molecular mechanism underlying autophagy impairment in the retinal pigment epithelium (RPE) in dry age-related macular degeneration (AMD) is not yet clear. Based on the causative role of poly(ADP-ribose) polymerase 1 (PARP1) in RPE necrosis, this study examined whether PARP1 is involved in the autophagy impairment observed during dry AMD pathogenesis. We found that autophagy was downregulated following H2O2-induced PARP1 activation in ARPE-19 cells and olaparib, PARP1 inhibitor, preserved the autophagy process upon H2O2 exposure in ARPE-19 cells. These findings imply that PARP1 participates in the autophagy impairment upon oxidative stress in ARPE-19 cells. Furthermore, PARP1 inhibited autolysosome formation but did not affect autophagosome formation in H2O2-exposed ARPE-19 cells, demonstrating that PARP1 is responsible for impairment of late-stage autophagy in particular. Because PARP1 consumes NAD+ while exerting its catalytic activity, we investigated whether PARP1 impedes autophagy mediated by sirtuin1 (SIRT1), which uses NAD+ as its cofactor. A NAD+ precursor restored autophagy and protected mitochondria in ARPE-19 cells by preserving SIRT1 activity upon H2O2. Moreover, olaparib failed to restore autophagy in SIRT1-depleted ARPE-19 cells, indicating that PARP1 inhibits autophagy through SIRT1 inhibition. Next, we further examined whether PARP1-induced autophagy impairment occurs in the retinas of dry AMD model mice. Histological analyses revealed that olaparib treatment protected mouse retinas against sodium iodate (SI) insult, but not in retinas cotreated with SI and wortmannin, an autophagy inhibitor. Collectively, our data demonstrate that PARP1-dependent inhibition of SIRT1 activity impedes autophagic survival of RPE cells, leading to retinal degeneration during dry AMD pathogenesis.

Expression of ERCC1, MSH2 and PARP1 in Non-small Cell Lung Cancer and Prognostic Value in Patients Treated with Platinum-based Chemotherapy

  • Xie, Ke-Jie;He, Hong-Er;Sun, Ai-Jing;Liu, Xi-Bo;Sun, Li-Ping;Dong, Xue-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2591-2596
    • /
    • 2014
  • Purpose: To evaluate the prognostic value of the expression of excision repair cross-complementation group l (ERCC1), MutS protein homolog 2 (MSH2) and poly ADP-ribose polymerase 1 (PARP1) in non-small-cell lung cancer patients receiving platinum-based postoperative adjuvant chemotherapy. Methods: Immunohistochemistry was applied to detect the expression of ERCC1, MSH2 and PARP1 in 111 cases of non-small cell lung cancer paraffin embedded surgical specimens. Through og-rank survival analysis, we evaluated the prognostic value of the ERCC1, MSH2, PARP1 and the related clinicopathological factors. COX regression analysis was used to determine whether ERCC1, MSH2 and PARP1 were independent prognostic factors. Results: In the enrolled 111 non-small cell lung cancer patients, the positive expression rate of ERCC1, MSH2 and RARP1 was 33.3%, 36.9% and 55.9%, respectively. ERCC1 (P<0.001) and PARP1 (P=0.033) were found to be correlated with the survival time while there was no correlation for MSH2 (P=0.298). Patients with both ERCC1 and PARP1 negative cancer had significantly longer survival time than those with ERCC1 (P=0.042) or PARP1 (P=0.027) positive alone. Similalry, the survival time of patients with both ERCC1 and PARP1 positive cancer was shorter than those with ERCC1 (P=0.048) or PARP1 (P=0.01) positive alone. Conclusion: Patients with ERCC1 or PARP1 negative non-small cell lung cancer appear to benefit from platinum-based postoperative adjuvant chemotherapy.

A Novel Reciprocal Crosstalk between RNF168 and PARP1 to Regulate DNA Repair Processes

  • Kim, Jae Jin;Lee, Seo Yun;Kim, Soyeon;Chung, Jee Min;Kwon, Mira;Yoon, Jung Hyun;Park, Sangwook;Hwang, Yiseul;Park, Dongsun;Lee, Jong-Soo;Kang, Ho Chul
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.799-807
    • /
    • 2018
  • Emerging evidence has suggested that cellular crosstalk between RNF168 and poly(ADP-ribose) polymerase 1 (PARP1) contributes to the precise control of the DNA damage response (DDR). However, the direct and reciprocal functional link between them remains unclear. In this report, we identified that RNF168 ubiquitinates PARP1 via direct interaction and accelerates PARP1 degradation in the presence of poly (ADP-ribose) (PAR) chains, metabolites of activated PARP1. Through mass spectrometric analysis, we revealed that RNF168 ubiquitinated multiple lysine residues on PARP1 via K48-linked ubiquitin chain formation. Consistent with this, micro-irradiation-induced PARP1 accumulation at damaged chromatin was significantly increased by knockdown of endogenous RNF168. In addition, it was confirmed that abnormal changes of HR and HNEJ due to knockdown of RNF168 were restored by overexpression of WT RNF168 but not by reintroduction of mutants lacking E3 ligase activity or PAR binding ability. The comet assay also revealed that both PAR-binding and ubiquitin-conjugation activities are indispensable for the RNF168-mediated DNA repair process. Taken together, our results suggest that RNF168 acts as a counterpart of PARP1 in DDR and regulates the HR/NHEJ repair processes through the ubiquitination of PARP1.

Methylated-UHRF1 and PARP1 interaction is critical for homologous recombination

  • Hahm, Ja Young;Kang, Joo-Young;Park, Jin Woo;Jung, Hyeonsoo;Seo, Sang-Beom
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.112-117
    • /
    • 2020
  • A recent study suggested that methylation of ubiquitin-like with PHD and RING finger domain 1 (UHRF1) is regulated by SET7 and lysine-specific histone demethylase 1A (LSD1) and is essential for homologous recombination (HR). The study demonstrated that SET7-mediated methylation of UHRF1 promotes polyubiquitination of proliferating cell nuclear antigen (PCNA), inducing HR. However, studies on mediators that interact with and recruit UHRF1 to damaged lesions are needed to elucidate the mechanism of UHRF1 methylation-induced HR. Here, we identified that poly [ADP-ribose] polymerase 1 (PARP1) interacts with damage-induced methylated UHRF1 specifically and mediates UHRF1 to induce HR progression. Furthermore, cooperation of UHRF1-PARP1 is essential for cell viability, suggesting the importance of the interaction of UHRF1-PARP1 for damage tolerance in response to damage. Our data revealed that PARP1 mediates the HR mechanism, which is regulated by UHRF1 methylation. The data also indicated the significant role of PARP1 as a mediator of UHRF1 methylation-correlated HR pathway.

Poly(ADP-ribosyl)ation of p53 Contributes to TPEN-Induced Neuronal Apoptosis

  • Kim, Hyun-Lim;Ra, Hana;Kim, Ki-Ryeong;Lee, Jeong-Min;Im, Hana;Kim, Yang-Hee
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.312-317
    • /
    • 2015
  • Depletion of intracellular zinc by N,N,N,N-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) induces p53-mediated protein synthesis-dependent apoptosis of mouse cortical neurons. Here, we examined the requirement for poly(ADP-ribose) polymerase (PARP)-1 as an upstream regulator of p53 in zinc depletion-induced neuronal apoptosis. First, we found that chemical inhibition or genetic deletion of PARP-1 markedly attenuated TPEN-induced apoptosis of cultured mouse cortical neurons. Poly(ADP-ribosyl)ation of p53 occurred starting 1 h after TPEN treatment. Suggesting the critical role of PARP-1, the TPEN-induced increase of stability and activity of p53 as well as poly(ADP-ribosyl)ation of p53 was almost completely blocked by PARP inhibition. Consistent with this, the induction of downstream pro-apoptotic proteins PUMA and NOXA was noticeably reduced by chemical inhibitors or genetic deletion of PARP-1. TPEN-induced cytochrome C release into the cytosol and caspase-3 activation were also blocked by inhibition of PARP-1. Taken together, these findings indicate that PARP-1 is essential for TPEN-induced neuronal apoptosis.

Docking and QSAR studies of PARP-1 Inhibitors (PARP-1 억제제의 Docking 및 QSAR 연구)

  • Kim, Hye-Jung;Cho, Seung-Joo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • /
    • pp.210-218
    • /
    • 2004
  • Poly(ADP-ribose)polymerase-1 (PARP-1) is a nuclear enzyme involved in various physical functions related to genomic repair, and PARP inhibitors have therapeutic application in a variety of neurological diseases. Docking and the QSAR (quantitative structure-activity relationships) studies for 52 PARP-1 inhibitors were conducted using FlexX algorithm, comparative molecular field analysis (CoMFA), and hologram quantitative structure-activity relationship analysis (HQSAR). The resultant FlexX model showed a reasonable correlation (r$^{2}$ = 0.701) between predicted activity and observed activity. Partial least squares analysis produced statistically significant models with q$^{2}$ values of 0.795 (SDEP=0.690, r$^{2}$=0.940, s=0.367) and 0.796 (SDEP=0.678, r$^{2}$ = 0.919, s=0.427) for CoMFA and HQSAR, respectively. The models for the entire inhibitor set were validated by prediction test and scrambling in both QSAR methods. In this work, combination of docking, CoMFA with 3D descriptors and HQSAR based on molecular fragments provided an improved understanding in the interaction between the inhibitors and the PARP. This can be utilized for virtual screening to design novel PARP-1 inhibitors.

  • PDF

Synthesis and Evaluation of Tricyclic Derivatives Containing a Non-Aromatic Amide as Poly(ADP-ribose)polymerase-1 (PARP-1) Inhibitors

  • Park, Chun-Ho;Chun, Kwang-Woo;Choi, Jong-Hee;Ji, Wan-Keun;Kim, Hyun-Young;Kim, Seung-Hyun;Han, Gyoon-Hee;Kim, Myung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1650-1656
    • /
    • 2011
  • A series of potent tricyclic derivatives with a non-aromatic amide as potent PARP-1 inhibitors were successfully synthesized and their PARP-1 inhibitory activity was evaluated. Among the derivatives, 2-(1-propylpiperidin-4-yloxy)-7,8,9,10-tetrahydrophenanthridin-6(5H)-one 23c displayed potent activity in a PARP-1 enzymatic assay and cell-based assay ($IC_{50}$ = 0.142 ${\mu}M$, $ED_{50}$ = 0.90 ${\mu}M$) with good water solubility. Further, molecular modeling studies confirmed the obtained biological results.

Novel Mutations of the PARP-1 Gene Associated with Colorectal Cancer in the Saudi Population

  • Alshammari, Atika Hazzaa;Shalaby, Manal Aly;Alanazi, Mohammad Saud;Saeed, Hesham Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3667-3673
    • /
    • 2014
  • Background: colorectal cancer (CRC) is the third most common type of cancers and the fourth leading cause of death worldwide. In Saudi Arabia, CRC accounts for 8.5% of all tumors; it ranks first among all cancers in males and third among females. The aim of this study was to link between different PARP-1 mutations and risk of CRC in Saudi population and to determine common variants of PARP-1 in Saudi CRC patients and normal individuals. Materials and Methods: DNA samples were isolated from fifty CRC patients and from a comparable number of control subjects then sequenced to detect different variations present in exons 3, 17, and 21 of the PARP-1 gene. Results and Conclusions: When comparing the genotype and allele frequencies of all detected SNPs in CRC patients with those in controls, we found none were significantly different for all variants even the most common SNP in PARP-1 gene (Val762Ala). However, two novel alterations in exon 21 were found to be associated with increased risk of CRC. The variants identified as (1) Lys933Asn [p-value 0.0318] and (2) Lys945Asn [p-value 0.0257]. Our results suggest that PARP-1 Lys933Asn and Lys945Asn alterations could be associated with increased risk of CRC in the Saudi population.

The Role of Kif4A in Doxorubicin-Induced Apoptosis in Breast Cancer Cells

  • Wang, Hui;Lu, Changqing;Li, Qing;Xie, Jun;Chen, Tongbing;Tan, Yan;Wu, Changping;Jiang, Jingting
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.812-818
    • /
    • 2014
  • This study was to investigate the mechanism and role of Kif4A in doxorubicin-induced apoptosis in breast cancer. Using two human breast cancer cell lines MCF-7 (with wild-type p53) and MDA-MB-231 (with mutant p53), we quantitated the expression levels of kinesin super-family protein 4A (Kif4A) and poly (ADP-ribose) Polymerase-1 (PARP-1) by Western blot after doxorubicin treatment and examined the apoptosis by flow cytometry after treatment with doxorubicin and PARP-1 inhibitor, 3-Aminobenzamide (3-ABA). Our results showed that doxorubicin treatment could induce the apoptosis of MCF-7 and MDA-MB-231 cells, the down-regulation of Kif4A and upregulation of poly(ADP-ribose) (PAR). The activity of PARP-1 or PARP-1 activation was significantly elevated by doxorubicin treatment in dose- and time-dependent manners (P < 0.05), while doxorubicin treatment only slightly elevated the level of cleaved fragments of PARP-1 (P > 0.05). We further demonstrated that overexpression of Kif4A could reduce the level of PAR and significantly increase apoptosis. The effect of doxorubicin on apoptosis was more profound in MCF-7 cells compared with MDA-MB-231 cells (P < 0.05). Taken together, our results suggest that the novel role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells is achieved by inhibiting the activity of PARP-1.