• Title, Summary, Keyword: OSL reader

Search Result 3, Processing Time 0.035 seconds

Development of OSL Dosimetry Reader (선량 판독용 OSL 측정장치의 개발)

  • Park, Chang-Young;Chung, Ki-Soo;Lee, Jong-Duk;Chang, In-Su;Lee, Jung-Il;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Design and performance test results of a newly developed optically stimulated luminescence (OSL) measurement system are presented in this paper. Generally, different types of optical filters are used in OSL reader system to minimize the interference of the stimulation light in the OSL signal. For optically stimulation of $Al_2O_3:C$, we have arrived at an optimal combination of the filters, i.e., GG420 filter for filtering the stimulating light source, and a combined UG11 and BG39 filter at the detecting window (PMT). By using a high luminance blue LED (Luxeon V), sufficient luminous intensity could be obtained for optically stimulation. By using various control boards, the OSL reader device was successfully interfaced with a personal computer. A software was developed to deliver required commands to operate the OSL reader by using the LabView program (National Instruments, Inc.). In order to evaluate the reliability and the reproducibility of newly designed-OSL reader. Performance testing of the OSL reader was carried out for OSL efficiency, OSL decay curve and signal to noise ratio of the standard $Al_2O_3:C$ OSL material. It was found to be comparable with that of commercial Riso reader system.

Development of Thermoluminescence and Optical Stimulated Luminescence Measurements System (열자극발광 및 광자극발광 측정장치의 개발)

  • Park, Chang-Young;Chung, Ki-Soo;Lee, Jong-Duk;Chang, In-Su;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • The thermoluminescence (TL) and optically stimulated luminescence (OSL) are commonly used to measure and record the expose of individuals to ionization radiation. Design and performance test results of a newly developed TL and OSL measurement system are presented in this paper. For this purpose, the temperature of the TL material can be controlled precisely in the range of $1{\sim}1.5^{\circ}C$ by using high-frequency (35 kHz) heating system. This high-frequency power supply was made of transformer with ferrite core. For optical stimulation, we have completed an optimal combination of the filters with the arrangement of GG420 filter for filtering the stimulating light source and a UG11 filter at the detecting window (PMT). By using a high luminance blue LED (Luxeon V), sufficient luminous intensity could be obtained for optical stimulation. By using various control boards, the TL/OSL reader device was successfully interfaced with a personal computer. A software based on LabView program (National Instruments, Inc.) was also developed to control the TL/OSL reader system. In this study, a multi-functional TL/OSL dosimeter was developed and the performance testing of the system was carried out to confirm its reliability and reproducibility.

Characteristic Evaluation of Optically Stimulated Luminescent Dosimeter (OSLD) for Dosimetry (광유도발광선량계(Optically Stimulated Luminescent Dosimeter)의 선량 특성에 관한 고찰)

  • Kim, Jeong-Mi;Jeon, Su-Dong;Back, Geum-Mun;Jo, Young-Pil;Yun, Hwa-Ryong;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate dosimetric characteristics of Optically stimulated luminescent dosimeters (OSLD) for dosimetry Materials and Methods: InLight/OSL $NanoDot^{TM}$ dosimeters was used including $Inlight^{TM}MicroStar$ Reader, Solid Water Phantom, and Linear accelerator ($TRYLOGY^{(R)}$) OSLDs were placed at a Dmax in a solid water phantom and were irradiated with 100 cGy of 6 MV X-rays. Most irradiations were carried out using an SSD set up 100 cm, $10{\times}10\;cm^2$ field and 300 MU/min. The time dependence were measured at 10 minute intervals. The dose dependence were measured from 50 cGy to 600 cGy. The energy dependence was measured for nominal photon beam energies of 6, 15 MV and electron beam energies of 4-20 MeV. The dose rate dependence were also measured for dose rates of 100-1,000 MU/min. Finally, the PDD was measured by OSLDs and Ion-chamber. Results: The reproducibility of OSLD according to the Time flow was evaluated within ${\pm}2.5%$. The result of Linearity of OSLD, the dose was increased linearly up to about the 300 cGy and increased supralinearly above the 300 cGy. Energy and dose rate dependence of the response of OSL detectors were evaluated within ${\pm}2%$ and ${\pm}3%$. $PDD_{10}$ and PDD20 which were measured by OSLD was 66.7%, 38.4% and $PDD_{10}$ and $PDD_{20}$ which were measured by Ion-chamber was 66.6%, 38.3% Conclusion: As a result of analyzing characteration of OSLD, OSLD was evaluated within ${\pm}3%$ according to the change of the time, enregy and dose rate. The $PDD_{10}$ and $PDD_{20}$ are measured by OSLD and ion-chamber were evaluated within 0.3%. The OSL response is linear with a dose in the range 50~300 cGy. It was possible to repeat measurement many times and progress of the measurement of reading is easy. So the stability of the system and linear dose response relationship make it a good for dosimetry.

  • PDF