• Title/Summary/Keyword: Numerical analysis

Search Result 8,067, Processing Time 0.289 seconds

A Comparative Study on Hydraulic Characteristics of Curved Channel by Hydraulic Model Experiments and Numerical Analysis (수리모형과 수치해석을 통한 만곡부 하천의 수리학적 특성 비교 고찰)

  • Seo, Dong-Il;Choi, Han-Kuy
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.85-94
    • /
    • 2007
  • This study, regarding curved channel, was performed to compare and analyze hydraulic characteristics and the speed of water and water level for left bank and right bank through hydraulic model experiments and numerical analysis. Real channels that had characteristics of curved channel were selected as objectives. In order to easily operate one and two dimensional numerical analysis and comparison for total 2.4Km model channel, measuring point was set up as 200m. HEC-RAS model was applied as one dimensional numerical analysis program and SMS model was used as two dimensional numerical analysis program. In respect of speed of water, the average speed of water for right bank recorded 8.33m/s in a model experiment and 3.08m/s, 8.57m/s were average speed of water for right bank in one dimensional and two dimensional numerical analysis. The average speed of water of two dimensional numerical analysis was quite similar to that of model experiments. Also, as for water level, maximum observational errors between one and two dimensional numerical analysis for right and left bank of model experiments were 0.66m, 0.84m and 0.28m, 0.48m for each. It was found that two dimensional numerical analysis had a similar result to hydraulic model experiments. Accordingly, from the result of this study, two dimensional numerical analysis should be used rather than one dimensional numerical analysis, when numerical analysis for curved channel is conducted.

  • PDF

Analysis of Hydraulic Characteristics in the Middle Reaches of Nak-Dong River using 2-Dimensional Numerical Analyis Model (2차원 수치해석모형을 이용한 낙동강 중류구간의 하천흐름 해석)

  • Han, Sung-Dea;Choi, Hyun;Ahn, Chang-Hwan;Lee, Je-Yun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.1732-1736
    • /
    • 2008
  • The characteristics of a river flow analysis are significant for river maintenance plan. At the present time, HEC-RAS, 1-Dimensional Numerical Analysis Model, is mainly applied to analyze the character of a river flow. The shape of a river is somewhat in longitudinal linear form. It was suspected that the usage of 1-dimensional numerical analysis model is more economical. Development of numerical analysis models and computers are possible to calculate large volume. Hence, it is possible to adapt the analysis of the key stations by 2-dimensional numerical analysis model. The limitation of 1-Dimensional Numerical Analysis Model is that it is hard to evaluate structure affection of numerical simulation by energy loss coefficient at river structure analyzing. When adaptation of the 2-dimensional numerical analysis model in river structure ensues, it takes more objective analyzing than 1-dimensional numerical analysis model for flow affection by river structure. 2-dimensional numerical analysis model consults with the different structure position of hydraulic characteristics and different water depth of shape and scope in vertical flow. 1-dimensional numerical analysis model is possible to simulate with only energy loss coefficient for sudden river section changing, sudden waterway changing by curved. 2-dimensional numerical analysis model use original geographical features. So the model removes technical subjectivity of faulty judgment. It is an objective analysis.

  • PDF

Applying the Polder Levee of the Stream Specific by Using Hydordynamic Model (수치해석을 이용한 윤중제 흐름특성해석 적용성)

  • Choi, Han-Kuy;Kim, Jang-Uk;Baek, Hyo-Sun
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.193-198
    • /
    • 2008
  • When the existing polder levee was constructed, the river's numerical analysis decided the bank raise by applying the planned flood stage or by using the result from the sectional 1st dimensional numerical analysis. But, it was presented that there is a limitation in the 1st dimensional value analysis when the structure like the polder levee obstructs the special shaped running water flow. Therefore, in order to verify the numerical value applicability when the polder levee is constructed, this report compared each other through the 1st and 2nd dimensional numerical analysis and the mathematical principle model laboratory. In case of the polder levee construction through the numerical analysis and the mathematical principle model laboratory, it was decided that there was no big problem in the 1st dimensional numerical analysis applied design, considering the uncertainty of mathematical principle analysis though the first dimensional numerical analysis was calculated a little bigger than the second. But, after construction, it was found that the water level deviation of the 1st, 2nd occurred biggest at the place where the flow was divided into two. Also, as a result of comparing the 1st, 2nd dimensional numerical analysis with the mathematical principle model laboratory, it was confirmed that the 1st numerical analysis applied design decreased the modal safety largely, as the left side water level was calculated smaller more than 0.5m in case of the 1st dimensional numerical analysis.

  • PDF

A Study of the Stream Specific by River Width's Downsizing & Extension (하천폭의 국부적 축소 및 확대에 따른 수리특성 연구)

  • Choi, Han-Kuy;Kim, Ju-Suk;Baek, Hyo-Sun
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.229-233
    • /
    • 2007
  • This research investigated the way of generating the flowing of water in case of artificial fluctuation of river width by the unidimensional numerical analysis in order to reconstruct vertical and expanse features of flowing, and the problem of existing numerical analysis in accordance with local enlargement and reduction of river through hydraulic model experiments with results of numerical analysis. The result revealed that when the local section change in the same river is exist, it showed 0.93m in the case of no change of local section in the hydraulic model experiments and numerical analysis, however, it presented 1.645m on the occasion of local section changes in the hydraulic model experiments and numerical analysis. In other words, there was a significant difference in the existing numerical analysis, when there was a local section change. As a result of the experimental section for the enlargement and reduction of local river width, due to the sensitive change for fluctuation of flood discharge, there was a significant difference between numerical analysis and hydraulic model experiments. In addition, the result of comparison between the enlargement and reduction of local river width confirmed that the result of numerical analysis with hydraulic model experiments showed larger generation of deviation in case of enlargement of section than in case of reduction of section.

  • PDF

A Study on the Application of Load Distribution Factor through the Three-Dimensional Numerical Analysis in Tunnel (터널의 3차원 수치해석에서 하중분배율 적용에 관한 연구)

  • Yoon, Won-Sub;Cho, Chul-Hyun;Park, Sang-Jun;Kim, Jong-Kook;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • /
    • pp.784-791
    • /
    • 2008
  • In this study, we recognized about application of the load distribution factor for design of tunnel in 3D numerical analysis. Generally, load distribution factor of tunnel is applied to describe 3D arching effect that can not describe when 2D numerical analysis. Through result of 3D numerical analysis, we used to apply in numerical analysis for the load distribution factor that ratio of finally displacement to displacement of construction step. But 3D numerical analysis need to apply to load distribution factor for convenience of numerical analysis. Therefore, we proposed load distribution factor that reduce time and coast. It corrected variable of advanced length in load distribution factor of 3D numerical analysis.

  • PDF

The study on the possibility of performance analysis for the compressive member using the numerical method (수치해석법을 활용한 압축부재 성능 해석의 가능성에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.1
    • /
    • pp.26-39
    • /
    • 2010
  • This is a leading study to replace the structural analysis methodology on the specific traditional joint by a numerical analysis. Tests were carried out to test the compressive methodologies with the numerical results. The Japanese larch was used as a sample. The Orthotropic property of wood was specifically considered for the finite element numerical analysis. Linear numerical analysis and non-linear numerical analysis for the BEAM element and the two SOLID elements of ANSYS were used to analyze the compressive performance. In addition, more finely divided elements were used to raise the accuracy of the numerical result. Finally, the statistically significant differences were tested between that of the analytical and numerical results. It could be concluded that the SOLID 64 element shows the most optimum result when the non-linear analysis with the more finely divided element was used. However, finely dividing of the element is a considerable time consuming process, and it is quite difficult to raise the accuracy of the non-linear numerical analysis. Therefore, if considering the vertical displacement to be of the only interest, the BEAM element is more efficient than the SOLID element because the BEAM element is reflected as a simple line, which is less time consuming and difficult in dividing the elements. But, the BEAM element cannot accurately model the knot as a strength defect factor which is an important property in the orthotropic property of wood. Therefore, the SOLID element should be used to model the strength defect factor, knot, as it can be efficiently applied on the structural size flexure member which could be more strongly effected by the knot. In addition, it is useful at times when the failure types of members are to be more closely investigated, as the SOLID element is able to examine the local stress distribution of the member. The conclusion drawn by this study is of the good concordance between analytical results and numerical results of compressive wood members, but how orthotropic properties should only be considered. The numerical analysis on the specific Korean traditional joints will be based on the current study results.

  • PDF

Reliability Verification of Numerical Prediction Method on Pile Behaviour Characteristics using Field Static Loading Test (현장정재하시험을 이용한 말뚝 거동특성 수치해석 예측기법의 신뢰성 검증)

  • Nam, Hosung;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.9
    • /
    • pp.11-18
    • /
    • 2017
  • Numerical analysis method for prediction of pile behaviour characteristics has widely been used in detail design process before construction because field static loading test requires high cost. However, the reliability verification of numerical analysis of result is not permitted compare with field test. In this study, to verify the numerical analysis results, pile behaviour prediction was compared with field static loading test results. For exact analysis of interaction between pile and ground, soil investigation and in-situ test such as boring, SPT and bore-hole shear test were performed before pile static loading test. During the static loading test, pile behaviour characteristics were analyzed under every loading condition. After static pile loading test, numerical analysis was carried out under same condition with static pile loading test. In the numerical analysis, to apply same loading condition with each loading condition in the field test and to compare with between the results of numerical analysis, the field test results for reliability were verified with the results of numerical analysis.

Study on the Numerical Analysis of Model Ground with SCP (SCP가 타설된 모형지반의 압밀거동에 관한 수치해석적 연구)

  • Hwang, Sung-Pil;Im, Jong-Chul;Kang, Yeoun-Ike;Kwon, Jeong-Geun;Joo, In-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • /
    • pp.1224-1231
    • /
    • 2009
  • 1D Analysis have been using Design of SCP in order to improve the soft ground. But 2D Analysis is researching and developing to get more accurate results. Using 2D Analysis, suitable Numerical Analysis Model should be selected and be tested in many situations. In this study, Laboratory Model Tests are analyzed by Numerical Analysis Method. After selecting Numerical Analysis Model, it is being tested many conditions.

  • PDF

Numerical Analysis of Tunnelling-Induced Ground Movements (터널굴착으로 발생한 지반거동에 대한 수치해석적 분석)

  • Son, Moo-Rak;Yun, Jong-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • /
    • pp.396-403
    • /
    • 2009
  • Numerical analysis has been performed to estimate maximum settlement and maximum horizontal displacement due to tunnel excavation varying ground condition, tunnel depth and diameter, and construction condition (volume loss at excavation face). The maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering ground condition, tunnel depth and diameter, and construction condition, and it has been also compared with the maximum horizontal displacement. The results from the numerical analysis have been compared with field measurements to confirm the applicability and validity of the results and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the ground movements due to tunnel excavation.

  • PDF