• Title/Summary/Keyword: Nonpoint Source

Search Result 303, Processing Time 0.131 seconds

A Study on the Designation of Nonpoint Pollution Management Region (비점오염원 관리지역 도출에 관한 연구)

  • Choi, Ji Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.434-439
    • /
    • 2007
  • Amended Water Quality Environment Preservation Law enacted that the areas where nonpoint pollution is serious can be designated as Nonpoint Source Management Region. According to Section 54 of Water Quality Environment Preservation Law, corresponding watersheds are areas where runoff from nonpoint pollution source may deteriorate river and lake water quality, residents' health and property, and ecosystem. The criteria are as followings; i) where nonpoint source contribution result in or will result in significant ecological destruction, iii) national or local industrial complexes and cities having population greater than one million where nonpoint source managements are necessary, iv) where specific measurement is necessary because of its geological and stratigraphic characteristics. In this research, detailed designation criteria was developed reflecting current nonpoint source management situation and its discharge characteristics. Depending on the result, target regions were also suggested. In additions, it will be desirable that the target regions are prioritized considering institutional execution availability, stakeholder's agreement, and connection with existing nonpoint source pollution management measures.

Development of Nonpoint Sources Runoff Load Estimation Model Equations for the Vineyard Area (포도밭에 대한 비점오염물질 유출량 추정 모델식 개발)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Yi, Youn-Jung;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.907-915
    • /
    • 2010
  • Agriculture nonpoint pollution source is a significant contributor to water quality degradation. To establish effective water quality control policy, environpolitics establishment person must be able to estimate nonpoint source loads to lakes and streams. To meet this need for orchard area, we investigated a real rainfall runoff phenomena about it. We developed nonpoint source runoff estimation models for vineyard area that has lots of fertilizer, compost specially between agricultural areas. Data used in nonpoint source estimation model gained from real measuring runoff loads and it surveyed for two years(2008-2009 year) about vineyard. Nonpoint source runoff loads estimation models were composed of using independent variables(rainfall, storm duration time(SDT), antecedent dry weather period(ADWP), total runoff depth(TRD), average storm intensity(ASI), average runoff intensity(ARI)). Rainfall, total runoff depth and average runoff intensity among six independent variables were specially high related to nonpoint source runoff loads such as BOD, COD, TN, TP, TOC and SS. The best regression model to predict nonpoint source runoff load was Model 6 and regression factor of all water quality items except for was $R^2=0.85$.

Pollutant Characteristics of Nonpoint Source Runoff in Okcheon Stream (강우시 소옥천에서의 비점오염원 유출 특성)

  • Oh, Young-Taek;Park, Je-Chul;Kim, Dong-Sup;Rhyu, Jae Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.657-663
    • /
    • 2004
  • The aims of this study are the characterization of runoff from nonpoint source, the analysis of the pollutant loads and an establishment of a management plan for nonpoint source of Okcheon. For this purpose the basin of the stream So-okcheon was selected to the investigated. During the period from May 29 to July 21 in 2003, the water automatic sampler system has been installed in Okkagkyo and parameters such as SS, COD, TOC, TP and TN were analyzed. The pollutants of nonpoint source seem to be washed out along the stream water in the beginning of rainfall, remain in water and cause the stream pollution. The runoffs during heavy rainfall, especially, much higher concentration of SS than those during dry period. With respect to the annual loading of pollutants of the nonpoint source, the COD was 124 ton/yr, TOC 396 ton/yr, TN 1,429 ton/yr and TP 4.2 ton/yr in the year 2002. With respect to the pollutants loading of the nonpoint source, the COD was 375 ton/yr(95% of the total COD loading of 394 ton/yr), TOC 844 ton/yr(96% of the tatal TOC loading of 876 ton/yr), TN 1,985 ton/yr(96% of the total TN loading of 2,062 ton/yr) and TP 37.1 ton/yr(92% of the total TP loading of 40.3 ton/yr) in the year 2003.

경작조건별 농경지 비료성분의 거동특성에 관한 칼럼 연구

  • 최태범;이기철;장윤영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • /
    • pp.279-281
    • /
    • 2003
  • This study is intended to give information on agricultural nonpoint source pollution and transport related to fertilizer application and irrigation practice. Field-simulated soil columns were set up and leaching studies on fertilizer components such as nitrogen and phosphorus were performed. Nitrogen and phosphorus in the leachate showed different trends in each column and nonpoint source pollution in agricultural areas may be expected to depend on planted crops, soil conditions, and climate as well as irrigation and fertilizing management.

  • PDF

Assessment of Free Water Surface Constructed Wetland Design Parameters for the Reduction of Agricultural Nonpoint Source Pollution (농업유역 비점원오염 저감을 위한 자유수면형 인공습지 설계인자 평가)

  • Jang, Jeong-Ryeol;Kwun, Soon-Kuk;Choi, Sun-Hwa
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • /
    • pp.637-642
    • /
    • 2005
  • The objective of this study is to evaluate design parameters of free water surface constructed wetland for the reduction of agricultural nonpoint source pollution. From literature review, the key design parameters were selected as influent concentration, influent water volume, hydraulic retention time and wetland system arrangement. The design value for each parameter was established after pilot study. Full-scale constructed wetland on the basis of the designed values was constructed to evaluate those reasonableness. The results of this study showed that the designed values for free water surface constructed wetland were appropriate for the reduction of agricultural nonpoint source pollution.

  • PDF

Effect of Tillage on Nonpoint Source Pollution of Surface and Ground Water System (I); Effect of Tillage Practices on Density and Saturation of Soil

  • ;shirmohammadi,Adel
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.E
    • /
    • pp.1-11
    • /
    • 1992
  • Increasing national concern on nonpoint source pollution of surface and ground water Systems has led researchers and policy makers to develop certain agricultural Best Management Practices. As an initial step of broad study program above mentioned, this study reflected the effects of different tillage practice on bulk density and degree of saturation on two regional soils, namely Tama silt loam and Catlin silt loam. Results may help to clarify some of the conflicting findings on the impact of tillage systems on these parameters and it may also explain some of the reasons for specific role that different tillage systems play regarding nonpoint source pollution from agricultural fields.

  • PDF

Spatial Analysis of Nonpoint Source Pollutant Loading from the Imha dam Watershed using L-THIA (L-THIA를 이용한 낙동강수계 임하댐유역 비점오염원의 공간적 분포해석)

  • Jeon, Ji-Hong;Cha, Daniel K.;Choi, Donghyuk;Kim, Tae-Dong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.17-29
    • /
    • 2013
  • Long-Term Hydrologic Impact Assessment (L-THIA) model which is a distributed watershed model was applied to analyze the spatial distribution of surface runoff and nonpoint source pollutant loading from Imha watershed during 2001~2010. L-THIA CN Calibration Tool linked with SCE-UA was developed to calibrate surface runoff automatically. Calibration (2001~2005) and validation (2006~2010) of monthly surface runoff were represented as 'very good' model performance showing 0.91 for calibration and 0.89 for validation as Nash-Sutcliffe (NS) values. Average annual surface runoff from Imha watershed was 218.4 mm and Banbyun subwatershed was much more than other watersheds due to poor hydrologic condition. Average annual nonpoint source pollutant loading from Imha wateshed were 2,295 ton/year for $BOD_5$, 14,752 ton/year for SS, 358 ton/year for T-N, and 79 ton/year for T-P. Amount of pollutant loading and pollutant loading rates from Banbyun watershed were much higher than other watersheds. As results of analysis of loading rate from grid size ($30m{\times}30m$), most of high 10 % of loading rate were generated from upland. Therefore, major hot spot area to manage nonpoint source pollution in Imha watershed is the combination of upland and Banbyun subwatershed. L-THIA model is easy to use and prepare input file and useful tool to manage nonpoint source pollution at screening level.

Investigating the Impact of Best Management Practices on Nonpoint Source Pollution from Agricultural Lands

  • ;Saied Mostaghimi
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.1-19
    • /
    • 1990
  • Abstract Over the last several decades, crop production in the United States increased largely due to the extensive use of animal waste and fertilizers as plant nutrient supplements, and pesticides for crops pests and weed control. Without the application of animal waste best management, the use of animal waste can result in nonpoint source pollution from agricultural land area. In order to increase nutrient levels and decrease contamination from agricultural lands, nonpoint source pollution is responsible for water quality degradation. Nonpoint source pollutants such as animal waste, ferilizers, and pesticides are transported primarily through runoff from agricultural areas. Nutrients, primarily nitrogen and phosphorus, can be a major water quality problem because they cause eutrophic algae growth. In 1985, it was presented that Watershed/Water Quality Monitoring for Evaluation BMP Effectiveness was implemented for Nomini Creek Watershed, located in Westmoreland County, Virginia. The watershed is predominantly agricultural and has an aerial extent of 1505 ha of land, with 43% under cropland, 54% under woodland, and 3% as homestead and roads. Rainfall data was collected at the watershed from raingages located at sites PNI through PN 7. Streams at stations QN I and QN2 were being measured with V-notch weirs. Water levels at the stream was measured using an FW-l Belfort (Friez FWl). The water quality monitoring system was designed to provide comprehensive assessment of the quality of storm runoff and baseflow as influenced by changes in landuse, agronomic, and cultural practices ill the watershed. As this study was concerned with the Nomini Creek Watershed, the separation of storm runoff and baseflow measured at QNI and QN2 was given by the master depletion curve method, and the loadings of baseflow and storm runoff for TN (Total Nitrogen) and TP (Total Phosphorus) were analyzed from 1987 through 1989. The results were studied for the best management practices to reduce contamination and loss of nutrients, (e.g., total nitrogen and total phosphorus) by nonpoint source pollution from agricultural lands.

  • PDF

Characteristics of Runoff Load from Nonpoint Source Pollutants in the Lake Doam Watershed (도암호 유역에서 비점오염물질의 유출부하 특성)

  • Kwak, Sungjin;Bhattrai, Bal Dev;Gim, Giyoung;Kang, Phil-Goo;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.135-147
    • /
    • 2018
  • In order to investigate the runoff characteristics of nonpoint source pollutants in the Lake Doam watershed, water quality and flow rate were monitored for 38-rainfall events from 2009 to 2016. The EMC values of SS, COD, TN and TP were in the range of 33~2,169, 3.5~56.9, 0.09~7.65 and $0.06{\sim}2.21mg\;L^{-1}$, respectively. As a result of analyzing the effect of rainfall factor on the nonpoint source pollutant load, EMCs of SS, COD and TP showed a statistically significant correlation with rainfall (RA) (p<0.01) and SS showed highly significant correlation with maximum rainfall intensity (MRI, R=0.48). The load ranges of SS, COD, TN and TP were 10.4~11,984.6, 1.1~724.4, 0.6~51.6 and $0.03{\sim}22.85ton\;event^{-1}$, respectively, showing large variation depending on the characteristics of rainfall events. The effect of rainfall on the load was analyzed. SS, COD and TP showed a positive correlation, but TN did not show any significant correlation. The annual load of SS was the highest with $88,645tons\;year^{-1}$ in 2011 when rainfall was the highest with 1,669 mm. The result of impact analysis of nonpoint source pollution reduction project and land-use change on runoff load showed that pollutant load significantly reduced from 2009 to 2014 but SS and TP loads were increased from 2014 to 2016 due to increase in construction area. Therefore, we suggested that nonpoint source pollution abatement plan should be continued to reduce the soil loss and pollutants during rainfall, and countermeasures to reduce nonpoint source pollution due to construction need to be established.

The Comparison of Water Quality of Daecheong-Dam basin According to the Data Sources of Land Cover Map (토지피복도 자료원에 따른 대청댐유역 수질특성 비교)

  • Lee, Geun Sang;Park, Jin Hyeog;Choi, Yun Woong
    • Spatial Information Research
    • /
    • v.20 no.5
    • /
    • pp.25-35
    • /
    • 2012
  • This study compared the influence of water quality according to the data sources of spatial information. Firstly, land cover map was constructed through image classification of Daecheong-dam basin and the accuracy of image classification from satellite image showed high as 88.76% in comparison with the large-scaled land cover map in Ministry of Environment, to calculate Event Mean Concentration (EMC) by land cover that impact on the evaluation of nonpoint source pollutant loads. Also curve number and direct runoff were calculated by spatial overlay with soil map and land cover map from image classification. And Seokcheon and Daecheong-Dam basin showed high in the analysis of curve number and direct runoff. Samgacheon-Joint and Sokcheon-Downstream basin showed high in the nonpoint source pollutant loads of BOD from direct runoff and EMC. And Samgacheon-Joint and Bonghwangcheon- Downstream basin showed high in the nonpoint source pollutant loads of TN and TP. Nonpoint source pollutant loads from image classification were compared with those by the land cover map from Ministry of Environment to present the effectivity of nonpoint source pollutant loads from satellite image. And Daecheong-Dam Upstream basin showed high as 10.64%, 11.70% and 20.00% respectively in the errors of nonpoint source pollutant loads of BOD, TN, and TP. Therefore, it is desirable that spatial information including with paddy and dry field is applied to the evaluation of nonpoint source pollutant loads in order to simulate water quality of basin effectively.