• Title, Summary, Keyword: Nitrogen management

Search Result 798, Processing Time 0.048 seconds

Behaviour of $NO_3-N$ in Soil and Groundwater Quality (토양(土壤)중 질산태질소(窒酸態窒素)의 행동(行動)과 지하수질(地下水質))

  • Yun, Sun-Gang;Yoo, Sun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.3
    • /
    • pp.281-297
    • /
    • 1993
  • Nitrogen is an element required to meet optimal plant growth. However, when it was applied (as chemical fertilizer or animal waste) more than the demand of plant and managed it unreasonably can be accumulated in subsoil and leached from soil system. Nitrogen also can be act as an pollutant to soil and water through water contamination if its concentration exceed the critical level. The concentration and downward movement of nitrate in soil is influenced by cultural practices and soil properties. High level of nitrate nitrogen in drinking water is harzadrous for animal and human health, especially for infants and the restoration of the quality of groundwater is impossible by now. Therefore it is the only way to prevent from leaching of nitrate nitrogen to keep the quality of groundwater as vital water resource. The aims of the presentation of this review paper are to understand the relationship between agricultural practices and the concentration of nitrate nitrogen in groundwater and to suggest further informations for the rational management methods to reduce the leaching of nitrate nitrogen in soil.

  • PDF

Nutrient Behavior in an Upland Field of Cabbage Adjacent to the River (하천변 양배추 밭에서의 영양물질의 거동)

  • Song, Chul-Min;Kim, Jin-Soo;Jang, Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.65-71
    • /
    • 2010
  • This study was conducted to investigate the dynamics of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in outflow from a cabbage farmland in a mixed land-use watershed. The TN concentrations in groundwater showed twice peaks in late July 2006 and late March 2007 (3.8, 4.7 mg/L, respectively), when it rained shortly after fertilizer application, indicating that nitrogen leaching is greatly influenced by fertilization and rainfall. The mean concentrations of TN and $NO_3$-N in surface water were not significantly higher than those in groundwater, while the mean concentrations of TP and $PO_4$-P in surface water were significantly (p < 0.05) were higher than those in groundwater. The TN concentrations in groundwater were generally higher than those in surface water during fertilization and early growing season due to the effect of fertilization, but vice versa in the other periods. In contrast, the TP concentrations in groundwater were always lower than those in surface water due to the sorption of particulate phosphorous by soil. The ratio of TN load in baseflow to that in total TN load (39 %) was much greater than the TP ratio (7 %), suggesting that baseflow contribute to nitrogen export. Therefore, proper fertilization management should be taken to reduce nitrogen load through baseflow.

Study on characteristic of mycelial culture in ear mushroom (목이의 균사생육 특성에 관한 연구)

  • Yu, Young-Jin;Choi, Kyu-Hwan;Jeong, Jong-Seong;Lee, Gi-Kwon;Choi, So-Ra
    • Journal of Mushroom
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2013
  • This study was performed to obtain the scientific data an artificial culture of ear mushroom(Auricularia auricula). Liquid cultural of Auricularia auricula. mycelium was characterized with respect to temperature, pH, compositions of inorganic, carbon and nitrogen. The its optimum temperature and media pH were at $25^{\circ}C$ and pH 5.0~6.0 on the mycelial growth, respectively. The optimum inorganic compositions and concentration for mycelial growth were $MgSO_4$ 0.05%(w/v) and $KH_2PO_4$ 0.1%(w/v), respectively. The optimum carbon sources and nitrogen sources were black-sugar 2%(w/v) and soybean powder at 0.3~0.5%(w/v) with7 days optimum culture time.

Comparison of nutrient balance and nutrient loading index for cultivated land nutrient management (농경지 양분관리를 위한 양분수지 지표와 양분부하 지표간의 비교)

  • Lee, Jun-Hyung;Yoon, Young-Man
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.554-567
    • /
    • 2019
  • Recently, concerns regarding the environmental impact due to nutrient input in croplands have increased. Therefore, the government is promoting the introduction of a nutrient management system in croplands to solve the problem of excessive nutrient input. This study was carried out to establish nutrient indicators in regional croplands to facilitate the introduction of the national nutrient management system in Korea. The nutrient load and balance indicators for nitrogen and phosphorus were analyzed for nine provinces (Gang-won, Gyeong-gi, Chung-buk, Chung-nam, Jeon-buk, Jeon-nam, Gyeong-buk, Gyeong-nam, and Jeju). In the correlation analysis between the nutrient load and nutrient balance, the correlation coefficient (r) for nitrogen was 0.2504, which was not statistically significant at the 5% significance level. However, the correlation coefficient for phosphorus was 0.7375, which was statistically significant at the 5% significance level. In the nutrient management index, phosphorus showed mutual compatibility between the nutrient load and the nutrient balance indicators, but nitrogen showed no mutual compatibility between the nutrient load and the nutrient balance indicators. Therefore, utilization of the nutrient balance indicator, reflecting the characteristics of the agricultural environment, was more reasonable as a nutrient management index for regional nutrient management.

Comparison of the Total Nitrogen Determination Methods (총질소 분석방법의 비교)

  • Joung, Kwang-Wook;Yoon, Chun-Gyeong;Ham, Jong-Hwa
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • /
    • pp.421-425
    • /
    • 2001
  • Among the many parameters describing water quality, total nitrogen content(TN) is regarded as important one in relation to water quality management of the waterbodies for its role in eutrophication process. This study evaluated for accuracy, convenience and promptness of nitrogen analysis methods : (1)UV spectrophotometric method, (2)summation method, (3)cadmium reduction method. And, the detection limit of each method was calculated using EPA method. The UV spectrophotometric method after oxidation appears to be more convenient and accurate in determination of the TN contents than the summation method and cadmium reduction method. The summation method is necessary to separate determinations of the organic nitrogen, ammonia, nitrite, and nitrate. And, because summation method has many other methods for each contents, it can be detected for wide range of concentration.

  • PDF

Serial Particle Size Fractionation and Water Quality in a Recirculating Aquaculture System for Eel

  • Lee, Jin-Hwan
    • Fisheries and aquatic sciences
    • /
    • v.13 no.2
    • /
    • pp.133-139
    • /
    • 2010
  • The effects of suspended solids size on culture water quality were determined in a commercial recirculating aquaculture system (RAS) for Japanese eel, Anguilla japonica. The particulate phase of the culture water was serially divided into six size fractions using 300, 200, 100, 75, 45, and 26 ${\mu}m$ pore size stainless sieves. The total, dissolved, and particulate nitrogen and phosphorus, and suspended solids for each fraction were determined. The concentration ranges in the fractions were: total nitrogen, 164-148 mg $L^{-1}$; total phosphorus, 20.4-15.5 mg $L^{-1}$; and total suspended solids, 8.1-6.1 mg $L^{-1}$. The concentration of total nitrogen and total phosphorus decreased significantly (P<0.05) with a 26 ${\mu}m$ and 200 ${\mu}m$ filter pore size, respectively. Nutrients from dissolved organic substances were much higher than from particulates. Analysis of particle size fractionation and its effects on water quality is useful to estimate removal efficiencies of a commercial effluent screening device for solid management and development of solid removal systems.

Effect of Water Management after Fertilizer Application on Fate and Efficiency of Applied Nitrogen (시식 후 물관리 방법이 실소의 동태 및 이용효율에 미치는 영향)

  • 이변우;명을재;최관호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.157-166
    • /
    • 1995
  • The fate and use efficiency of applied nitrogen were evaluated in a pot experiment with different fertilizers and water management practices during 30days after fertilizer application. N-P-K compound fertilizers, 13-10-1l(F-l) for upland Crop use and 15-10-10(F-3) for rice Crop use, and mixed fertilizer, 21-17-17(F-2) for basal dressing in rice were used. Fertilizers corresponding to 1.8g N were mixed thoroughly with the whole volume of sandy loam soil in a pot. The pots were flooded upto 3cm above soil surface for O(0dF), 10(10dF), 20(20dF), and 30(30dF) days after fertilizer application and all the treatments were flooded continuously from 30 days after fertilizer application. During the flooding period water percolation rate was adjusted to 2.5mm/day. Rice seedlings were transplanted 40 days after fertilizer application. The pH of infiltrated water increased with increasing duration of flooding. The pH of F-2 was higher than those of F-1 and F-3 between which there were no differences. The applied nitrogen remained 23% in F-1, 29% in F-2, and 29.1 % in F-3, and 45.0% in 0dF, 26.6% in 10dF, 24.8% in 20dF, and 20.3% in 30dF as inorganic nitrogen at 63 days after fertilizer application. Nitrogen losses by leaching amounted to 51.3%, 32.1% and 48.1% of applied nitrogen in F-1, F-2 and F-3, respectively. Nitrogen leaching losses increased with increasing duration of flood- ing, amounting to 25.7%, 29.8%, 32.7%, and 35.8% in 0dF, 10dF, 20dF and 30dF, respectively. Gaseous loss of applied nitrogen was greatest in F-2, followed by F-1 and F-3. Total loss of nitrogen due to gaseous volatilization and leaching was greatest in F -1, followed by F -2 and F-3, and were greater in the treatments with longer flooding after fertilizer application. Nitrogen recovery by rice shoot until 72 days after transplanting were 23.2%, 24.7% and 27.4% of applied nitrogen in F-1, F-2 and F-3, respectively and 34.1%, 25.5%, 21.1%, and 21.2% in 0dF, 10dF, 20dF and 30dF, respectively.

  • PDF

Tillage practices and fertilization effects on growth and nitrogen efficiency in soybean

  • Roy, Swapan Kumar;Jung, Hyun-Jin;Yoo, Jang-Hwan;Kwon, Soo Jeong;Yang, Jong-Ho;Kim, Sook-Jin;Chung, Keun-Yook;Kim, Hong-Sig;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • /
    • pp.356-356
    • /
    • 2017
  • A field experiment was performed to evaluate the effects of tillage systems and fertilizer management on yield and nutrient uptake in Soybean. The plant height, fresh weight and dry weight of conventional tillage were much higher those observed for no-tillage. Significant differences in plant height were observed under tillage practices combined with fertilizer treatment. However, the greatest plant height (128.47 cm) was observed in conventional tillage with chemical fertilizer, and the lowest (45.4 cm) was observed in the no-tillage with green manure treatment. The highest fresh weight (172.4 g) and dry weight (44.1 g) were observed from the no-tillage chemical treatment in the late flowering stage of soybean. The plant concentration of nitrate was higher (2.29%) in no-tillage with green manure than it was with chemical fertilization. However, nitrogen increased steadily in all treatments, and the highest quantity of total nitrogen (476.7 Kg/ha) was observed in no-tillage with green manure. The N content in the soil decreased gradually just after the vegetative stage. Tillage practices and additional fertilizer application had an adverse effect on the uptake of N, P and K in soybean seeds. The nitrogen concentration in seeds was found to be increased in the no-tillage with green manure treatment. The uptake of more nitrogen induced a better yield. Thus, the no-tillage with green manure treatment had the greatest yield, although no significant difference was observed among foliar-applications and additional fertilization. Additionally, the phosphorus and potassium concentrations in seeds remained the same between the conventional tillage and no-tillage treatments. The results obtained in this study indicate that no-tillage strategies with fertilizers may influence the growth characteristics and mineral uptake in soybean.

  • PDF

The Effect of Nitrogen Application and Clipping Interval on the Characteristics of Several Turf Components of Korean Lawn Grass (Zoysia japonica Steud.) (질소시용 및 예초간격이 한국 잔디(Zoysia japonica Steud.)의 제잔디 구성요소 특성변화에 미치는 영향)

  • 심재성;윤익석
    • Asian Journal of Turfgrass Science
    • /
    • v.1 no.1
    • /
    • pp.18-29
    • /
    • 1987
  • This study was carried out to examine the effect of nitrogen application and clipping interval on the characteristics of several turf components of korean lawngrass for the basic data of lawn management. It was treated by Split plot design with three replications. The main plots were nitrogen levels with 0, 350, and 700kgN / ha, and the sub plots were clipping intervals with 10, 20, and 30 days The results obtained are summarized as follows ; 1. Increasing the rate of nitrogen fertilizer and frequent clipping increased tiller number of korean lawngrass and the maximum number of tillers obtained in October were recorded from 700kgN application and clipping treatment of 10 days interval. Meanwhile, treatment of 350kgN with 10 days clipping interval increased tillers much more than those of 700kgN with 20 and 30 days clipping intervals. 2. The average number of green leaves occurred during the growth period maximized by applying 700 kgN and clipping 10 days interval. 3. Increasing tiller numbers significantly decreased tops DM weight per tiller by clippng plants at interval of 10 and 20 days, irrespective of nitrogen applied, and with nil N, at the interval of 30 days. By applying 700kgN however, tops DM weight per tiller increased as the number of tillers increased consistently. 4. The highest tops DM weight was achieved from late August to early September by applying 350 and 700kgN. 5. During the growth period, nitrogen application increased unders(stolon+root) DM weight, and, at the same level of nitrogen applied, the increase in stolon DM weight enhanced by lengthening the clipping interval to 30 days. 6. Nitrogen efficiency to green leaves, stolon nodes and DM weight of root with high nitrogen was achieved as clipping interval was shortened.

  • PDF

Recommendation of the Amount of Nitrogen Top Dressing based on Soil Nitrate Nitrogen Content for Leaf Perilla (Perilla frutescens) under the Plastic Film House (토양 질산태질소 함량에 따른 시설 잎들깨 질소 웃거름시비량 추천)

  • Kang, Seong-Soo;Lee, Ju-Young;Sung, Jwa-Kyung;Gong, Hyo-Young;Jung, Hyung-Jin;Park, Chang-Hwan;Yun, Yeo-Uk;Kim, Myung-Sook;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1112-1117
    • /
    • 2011
  • This study was conducted to recommend nitrogen (N) top dressing based on soil nitrate content for leaf perilla under forcing culture in Gumsan-gun and Milyang-si. Experimental design was the randomized complete block design for five N fertilization levels and conventional fertilization. Dry weight, nitrogen uptake, and the node number of leaf perilla were measured and soil nitrate contents were analyzed monthly. The amount of nitrogen uptake for growth of a node with two leaves was $2.2kg\;10a^{-1}$ for Gumsan site and $3.5kg\;10a^{-1}$ for Milyang site. Lower level of soil nitrate N concentration for standard N fertilization was determined as $10mg\;kg^{-1}$ for both sites. Soil depth, bulk density, utilization rate of soil nitrate N, and the amount of N uptake for growth of a node with two leaves were considered for calculation of upper level of soil nitrate N concentration. The upper levels of soil nitrate N concentration for no N fertilization were determined as $30mg\;kg^{-1}$ for Gumsan site and as $40mg\;kg^{-1}$ for Milyang site. Consequently the recommendation equations for the N top dressing were Y=-0.157X+4.71 for Gumsan site and Y=-0.1667X+6.6667 for Milyang site.