• Title, Summary, Keyword: Motor vibration

Search Result 1,296, Processing Time 0.063 seconds

The measurement and the evaluation method of the vibration of AC motor (AC모터의 진동특성 및 진동품질 평가방법)

  • Choi, Hyun;Kim, In-Woog;Lee, Sun-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.466-469
    • /
    • 2002
  • The vibration measurement of the AC motor, the most typically used vibration source, is essential to evaluate the causes of unexpected excessive vibration in many mechanical systems. The motor contributes to excite the resonance of the mechanical systems, and in turn tilt amplified vibration of the mechanical parts cause the motor to vibrate severely. Without the vibration evaluation on the motor itself, it is time consuming to solve the vibration problems. This paper deals the vibration measurement method for the AC motor itself.

  • PDF

A case study in the dynamic characteristic of a test rig for a high-speed motor (고속 BLDC 전동기를 위한 시험설비의 구조적 동특성에 관한 연구)

  • Park, Chul-Jun;Lee, Sung-Wuk;Park, Young-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.641-645
    • /
    • 2008
  • In this paper, vibration sources of the BLOC motor are identified and the motor vibrations are reduced by structural modification. For vibration characteristic identification, vibration signals measured by an accelerometer when the BLOC motor is moving. These signals are presented in a waterfall plot in order to find the dependency of frequency components on the motor speed. It is found that main vibration source is BLOC motor test rig. From finite element analyses and some experiments, it is also found that resonances occur because the natural frequencies of the test rig exist in usual driving speed rang. To shift the natural frequencies outside the driving rang, the test rig is modified increase stiffness. It is verified that considerable amount of vibration are reduced by the structural modification.

  • PDF

Design and Analysis on Electromagnetic Vibration source of BLDC motor for Vibration r eduction (BLDC Motor의 전자기적 가진원 분석 및 진동저감 설계)

  • Song, Hyauk-Jin;Kang, Gyu-Hong
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1126-1128
    • /
    • 2005
  • In this paper, electromagnetic vibration soruce of BLDC motor is analyzed, and a method of reducing vibration is presented. The vibration sources of BLDC motor are cogging torque and commutation torque ripple. The effectiveness of the proposed method were verified with experiments on FFT analysis.

  • PDF

Optimal Switching Position of Two-Phase Brushless DC Motor with the Consideration of Vibration (진동을 고려한 2상 BLDC 모터의 최적 스위칭 위치)

  • 정중기;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.465-470
    • /
    • 2001
  • Two-phase BLDC(brushless DC) motor has larger torque ripple than three-phase BLDC motor because of its unique skeleton-type structure. An electronic switching mechanism to change the current-direction of the BLDC motor can be a source of vibration as well as unbalanced rotor weight. A proper switching timing which makes less vibrations was considered by changing the position of sensing element around the center of rotation. Also, the current of the motor was measured for the calculation of the motor efficiency. From the vibration test results and with the consideration of the motor efficiency, an optimal switching position of the Hall sensor was found.

  • PDF

Automatic Measurement of Noise and Vibration for Power seat DC motor in the vehicle (자동차 Power Seat 용 DC Motor의 소음 진동 자동 평가에 대한 연구)

  • 한형석;정의봉;김건혁;송도훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.1142-1147
    • /
    • 2002
  • For the evaluation of the DC motor noise and vibration, usually it is rely on human feeling because some kinds of noise are not definitely represented by measurement Instrument such as sound meter. But when we consider time signal of the noise and vibration. It is possible to represent them. And in this paper. it is suggested to study output current shape of the motor because it Is the source to make speed and torque variation of the motor. If the current shape is not stable. it makes operating state of the motor unstable and produces noise and vibration. By analyzing signal at time and frequency of noise and vibration and current shape. it is possible to automation of the noise and vibration measurement in the Production line.

  • PDF

A Study on vibration of slim type Permanent Magnet Synchronous Motor for driving elevator (엘리베이터 직접 구동용 박형 영구자석 동기전동기의 진동에 관한 연구)

  • Kim, Sung-Joo;Kim, Kyung-Ho;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.6-8
    • /
    • 2003
  • Electromagnetic system of motor is being minimized by superior magnetic material and advanced design technology. But this type of motor causes a serious vibration. This is a big problem of motor operation. To decrease a vibration, motor is need to be designed considering mechanical vibration. This paper study about torque, natural frequency and mechanical vibration according to displacement.

  • PDF

Vibration and Shock Measurement of KSLV-I Kick Motor on the Ground Test (KSLV-I 킥 모터 지상연소시험에서의 진동 및 충격 계측)

  • Oh, Jun-Seok;Kim, Jeong-Yong;Roh, Woong-Rae;Eun, Hee-Kwang;Im, Jong-Min;Moon, Sang-Mu
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.98-104
    • /
    • 2009
  • A solid kick motor is used for propulsion system of KSLV-I 2nd stage. During combustion of the kick motor, vibration and shock could be generated. And it could be transferred to the vehicle equipment bay through the kick motor body. If vibration and shock transferred to the vehicle equipment bay are considerable, electrical equipments could be disordered. Therefore we need to verify influence of vibration and shock caused by combustion of the kick motor. In this research, we measured vibration of the kick motor on the ground firing test. Based on this measurement data, we analyzed random vibration and shock response spectrum.

  • PDF

Novel Design of Two-Phase PM Vibration Motor Used for Cell-Phones (새로운 형태의 휴대폰용 2 상 진동모터의 설계)

  • Lee, Hong-Joo;Kim, Kwang-Suk;Lee, Chang-Min;Hwang, Gun-Yong;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.218-223
    • /
    • 2008
  • Cell-phone becomes a necessary communication device in modern society. However, a paging signal by a sound transducer often acts as an unpleasant noise, thus necessitating a paging signal by a vibration motor. The conventional flat type vibration motor uses three-phase windings with three phase coils. In this article, a new design of a vibration motor using a V connection with two phase coils is presented, increasing mass productivity. For electromagnetic field analysis, due to the motor symmetry, two-dimensional modeling can be implemented for fast computation, and performance is predicted by the finite element method. The winding distribution angle turns out to be the most important design parameter for the elimination of dead points, and a new coil configuration is suggested which has no adverse effect on motor size and weight. Experimental tests of vibration confirm the validity of the proposed design.

  • PDF

The Experimental Analysis of Aerodynamic Sound for Fan Motor in a Vacuum Cleaner Using Laser 3-D Scanning Vibrometer and Microphone (레이저 3차원 진동측정기와 마이크로폰을 이용한 진공청소기용 팬모터의 실험적인 공력소음 분석)

  • Kwac Lee-Ku;An Jae-Sin;Kim Jae-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3
    • /
    • pp.46-51
    • /
    • 2005
  • The vacuum cleaner motor runs at very high speed for suction power. Specially, motor power is provided by the impeller being rotated at very high speed. The centrifugal fan consists of the impeller, the diffuser, and the circular casing. Due to the high rotating speed of the impeller and small gap distance between the impeller and the diffuser, the level of noise in the centrifugal fan is at BPF(Blade Passage Frequency) and its harmonic frequencies. In order to calculate the sound pressure of centrifugal fan, unsteady flow data are needed. The cause of noise is obtained by dividing the fluid noise by exhaust flow of fan and vibration noise by rotational vibration of vacuum cleaner fan motor. Until now, an accelerometer has been used to measure vibration. However, it can not measure vibration in some parts of brush and commutator because of motor construction and 3-D vibrating mode. This study was conducted to perform accurate analysis of vibration and aerodynamic sound for fan motor in a vacuum cleaner using a laser vibration analyzer. A silent fan motor can be designed using the data measured in this study.

A Study on the Characteristic of Noise and Vibration in 3-phase Induction Motor for the Forklift (전동 지게차용 3상 유도 모터의 소음 진동 특성에 대한 연구)

  • Kim, Woo-Hyung;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • This paper presents the reduction of acoustic noise generated by electromagnetic force in an induction motor of the electrical forklift. After summarizing the electromagnetic excitation forces due to the interaction between the stator/rotor slot permeance and the stator winding magnetomotive force, the effects of the electromagnetic force on the noise and vibration of an induction motor are analyzed. In order to experimentally identify the noise sources of the motor, the signal analyses for noise and vibration are performed by using waterfall plots of noise and vibration spectrums. It is found that severe noise and vibration are caused by the electromagnetic force when the mode number of the excitation shape for a stator is low. Furthermore, it is verified that the motor noise is amplified if the excitation frequency of the electromagnetic force coincides with one of the natural frequencies of the stator. It is experimentally demonstrated that this severe noise can be considerably reduced by structure modifications. Finally, some design guidelines are suggested to develop an induction motor with a low level of noise.