• Title, Summary, Keyword: Model tunnel

Search Result 1,865, Processing Time 0.066 seconds

The effect of radial cracks on tunnel stability

  • Zhou, Lei;Zhu, Zheming;Liu, Bang;Fan, Yong
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.721-728
    • /
    • 2018
  • The surrounding rock mass contains cracks and joints which are distributed randomly around tunnels, and in the process of tunnel blasting excavation, radial cracks could also be induced in the surrounding rock mass. In order to clearly understand the impact of radial cracks on tunnel stability, tunnel model tests and finite element numerical analysis were implemented in this paper. Two kinds of materials: cement mortar and sandstone, were used to make tunnel models, which were loaded vertically and confined horizontally. The tunnel failure pattern was simulated by using RFPA2D code, and the Tresca stresses and the stress intensity factors were calculated by using ABAQUS code, which were applied to the analysis of tunnel model test results. The numerical results generally agree with the model test results, and the mode II stress intensity factors calculated by ABAQUS code can well explain the model test results. It can be seen that for tunnels with a radial crack emanating from three points on tunnel edge, i.e., the middle point between tunnel spandrel and its top with a dip angle $45^{\circ}$, the tunnel foot with a dip angle $127^{\circ}$, and the tunnel spandrel with $135^{\circ}$ with tunnel wall, the tunnel model strength is about a half of the regular tunnel model strength, and the corresponding tunnel stability decreases largely.

Use of large-scale shake table tests to assess the seismic response of a tunnel embedded in compacted sand

  • Zhou, Hao;Qin, Xiaoyang;Wang, Xinghua;Liang, Yan
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.655-665
    • /
    • 2018
  • Shield tunnels are widely used throughout the world. However, their seismic performance has not been well studied. This paper focuses on the seismic response of a large scale model tunnel in compacted sand. A 9.3 m long, 3.7 m wide and 2.5 m high rigid box was filled with sand so as to simulate the sandy soil surrounding the tunnel. The setup was excited on a large-scale shake table. The model tunnel used was a 1:8 scaled model with a cross-sectional diameter of 900 mm. The effective shock absorbing layer (SAL) on the seismic response of the model tunnel was also investigated. The thickness of the tunnel lining is 60 mm. The earthquake motion recorded from the Kobe earthquake waves was used. The ground motions were scaled to have the same peak accelerations. A total of three peak accelerations were considered (i.e., 0.1 g, 0.2 g and 0.4 g). During the tests, the strain, acceleration and soil pressure on the surface of the tunnel were measured. In order to investigate the effect of shock absorbing layer on the dynamic response of the sand- tunnel system, two tunnel models were set up, one with and one without the shock absorbing layer of foam board were used. The results shows the longitudinal direction acceleration of the model tunnel with a shock absorbing layer were lower than those of model tunnel without the shock absorbing layer, Which indicates that the shock absorbing layer has a beneficial effect on the acceleration reduction. In addition, the shock absorbing layer has influence on the hoop strain and earth pressure of the model tunnel, this the effect of shock absorbing layer to the model tunnel will be discussed in the paper.

Model Test of Lining for Estimation of Tunnel Soundness (터널 건전도 평가를 위한 라이닝 모델실험)

  • Kim, Young Keun
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.2
    • /
    • pp.59-71
    • /
    • 1999
  • Recently, many deformations in tunnel such as crack and leakage were occulted. Specially, the defects of tunnel lining have been a serious problem in safety and stability many repair works for maintenance in tunnel have been carried out. Therefore, it is necessary to estimate the structural cracking for countermeasure in deformed tunnel and to investigate on the characteristics of lining system and the soundness of tunnel. In this study model tests for tunnel lining were carried out using test apparatus and centrifuge, In the direct loading test, the prototype was Kyungbu high-speed railway tunnel and the scale is 1/10, and lining models were made of concrete. Test conditions included load conditions such as direction, shape and type, lining conditions such as single and double lining, thickness, and reinforcement. In centrifuge model test, the prototype was Seoul subway tunnel and the scale is 1/100, and lining models were made of aluminum and hydrostone. Test conditions included tunnel defects such as thickness shortage. behind cavity and longitudinal cracks, reinforcement methods such as epoxy, grouting and carbon sheet. From these model tests , the characteristics of deformation and failure for tunnel lining were estimated, and the structural behaviors of deformed lining and the effects of repair and reinforcement for tunnel lining were researched.

  • PDF

Stability of A Surcharged Tunnel under the Effect of Pre-Loading on the Adjacent Braced Wall (근접한 흙막이벽체에 가하는 선행하중의 영향을 받는 상재하중 재하 터널의 안정)

  • Kim, IL;Lee, Sang Duk
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.2
    • /
    • pp.10-27
    • /
    • 2008
  • When the ground is excavated adjacent to the existing tunnel, which is loaded by the surcharge on the ground surface, the tunnel stability would be very sensitive to the deformation of the ground induced by the horizontal displacement of braced wall. The stability of the existing surcharged tunnel could be controlled by pre-loading on the braced wall. In this paper, it was investigated, if it would be possible to keep the existing surcharged tunnel stable by preventing the horizontal displacement of a braced wall by imposing the pre-loading during the ground excavation. For this purpose, large scale model tests were performed in a scale 1/10 at the test pit which was 2.0m in width and 6.0m in height and 4.0m in length. Isotropic test ground was constructed homogeneously by wet sand. Model tunnel was constructed in the test ground. Surcharge was loaded on the ground surface above the tunnel. During the tests, the behavior of model tunnel and model braced wall was measured. Numerical analyses were also performed in the same condition as the tests. And their results were compared to that of the model tests. Consequently, the effect of a surcharge could be compensated by imposing the pre-loading on the braced wall. The existing tunnel and the braced wall could be kept stable by preventing the horizontal displacement of the braced wall through pre-loading, although the tunnel is surcharged.

  • PDF

Prediction model of service life for tunnel structures in carbonation environments by genetic programming

  • Gao, Wei;Chen, Dongliang
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.373-389
    • /
    • 2019
  • It is important to study the problem of durability for tunnel structures. As a main influence on the durability of tunnel structures, carbonation-induced corrosion is studied. For the complicated environment of tunnel structures, based on the data samples from real engineering examples, the intelligent method (genetic programming) is used to construct the service life prediction model of tunnel structures. Based on the model, the prediction of service life for tunnel structures in carbonation environments is studied. Using the data samples from some tunnel engineering examples in China under carbonation environment, the proposed method is verified. In addition, the performance of the proposed prediction model is compared with that of the artificial neural network method. Finally, the effect of two main controlling parameters, the population size and sample size, on the performance of the prediction model by genetic programming is analyzed in detail.

Effect of Seepage Forces on the Tunnel Face Stability - Assessing through Model Tests - (침투력이 터널 막장의 안정성에 미치는 영향 연구 - 모형실험을 중심으로 -)

  • 이인모;안재훈;남석우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • /
    • pp.41-48
    • /
    • 2001
  • In this study, two factors are simultaneously considered for assessing tunnel face stability: one is the effective stress acting on the tunnel face calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady-state groundwater flow. The seepage forces calculated by numerical analysis are compared with the results of a model test. From the results of derivations of the upper bound solution with the consideration of seepage forces acting on the tunnel face, it could be found that the minimum support pressure for the face stability is equal to the sum of effective support pressure and seepage pressure acting on the tunnel face. Also it could be found that the average seepage pressure acting on the tunnel face is proportional to the hydrostatic pressure at the same elevation and the magnitude is about 22% of the hydrostatic pressure for the drainage type tunnel and about 28% for the water-proof type tunnel. The model tests performed with a tunnel model had a similar trend with the seepage pressure calculated by numerical analysis. From the model tests it could be also found that the collapse at the tunnel face occurs suddenly and leads to unlimited displacement.

  • PDF

Wind Tunnel Test of MRP Model using External Balance

  • Chung, Jindeog;Sung, Bongzoo;Cho, Taehwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.68-74
    • /
    • 2000
  • A comparative wind tunnel testing of an airplane model was performed at the Korea Aerospace Research Institute Low Speed Wind tunnel(KARI LSWT). The model used for the comparative test was a seaplane model from the Glenn L. Martin Wind(GLM) Tunnel of University of Maryland, U.S.A. The 6-component external balance used in force and moment measurement is pyramidal type, which is a precision device that has strain gauge-type load cell inside of balance and the virtual center of the balance coincides with the tunnel centerline. Image method is adopted to eliminate the tare and interference of the model support, and to correct the flow angularity to the model also. Test results from KARI LSWT were compared with the results from GLM tunnel.

  • PDF

A Study on the Heat and Gas Flow for Fire Simulation in a Tunnel (화재시 터널내 열유동 시뮬레이션 모델 연구)

  • 우경범;김원갑;한화택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.584-591
    • /
    • 2002
  • The objective of the present study is to develop a model to predict heat and gas flow movement by fire in a tunnel. The model includes component models such as turbulence model, combustion model, fire model, jet fan model, etc. It has been validated using the data from Memorial Tunnel Fire Ventilation Test Program. The predictions are in good quantitative agreement with the experimental data in the far-field region of the tunnel. It should be further investigated to develop models for radiation between surfaces, for composite boundary conditions for conduction and convection, and for vigorous turbulent mixing in a tunnel especially for a large size of fire.

Wind tunnel effect analysis for MEXICO wind turbine model (MEXNEXT 풍력발전기 풍동 시험에 대한 풍동 영향 분석)

  • Shin, Hyungki;Lim, Jongsoo;Jang, Moonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.59.1-59.1
    • /
    • 2011
  • In this research, CFD calculation was implemented to analyze wind tunnel effect or rotor experiment in wind tunnel. One case included model wind turbine and all wind tunnel geometries. The other case include only rotor and nacelle system. Star-CCM+ was used for CFD analysis and rigid body motion around rotor area was applied to simulate rotating rotor. As for turbulence model, K-omega SST was used. The results were compared in 15m/s inflow condition. These results shows a good agreement with the measurement. Then, the result without wind tunnel was slightly different to the result with wind tunnel. Thus, in the case of Mexnex wind tunnel measurement, the wind tunnel don't affect the measurement result. Then, this wind tunnel and rotor size ratio can be reference for wind tunnel experiment of wind turbine rotor.

  • PDF

A Study for Influence of Sun Glare Effect on Traffic Safety at Tunnel Hood (직광에 의한 눈부심 현상이 터널 출구부 안전성에 미치는 영향 연구)

  • Kim, Youngrok;Kim, Sangyoup;Choi, Jaisung;Lee, Daesung
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.103-110
    • /
    • 2012
  • PURPOSES : In Korea, over 70 percent of the land consists of mountainous and rolling area. Thus, tunnels continue its upward trend as road network are extended. In these circumstances, the importance of tunnel has been increased nowadays and then its safety investigation and research should be performed. This study is focus on confirming and improving the safety of tunnel. On tunnel hood, sunglare effect can irritate driver's behavior instantly and this can result in incident. METHODS : The study of this phenomenon is rarely conducted in domestic and foreign papers, so there is no proper measure for this. This study analyzes the driving environment of the effect of sunglare effect on tunnel hood. RESULTS : Traffic accidents stem from complex set of factors. This study build the Traffic Accident Prediction Models to find out the effect of sunglare effect on tunnel's hood. The independent variables are traffic volume, geometric design of road, length of tunnel and road side environment. Using these variables, this model estimates accident frequency on tunnel hood by Poisson regression model and Negative binomial regression model. Although Poisson regression model have more proper goodness of fit than Negative binomial regression model, Poisson regression model has overdipersion problem. So the Negative binomial regression model is used in this analysis. CONCLUSIONS : Consequently, the model shows that sunglare effect can play a role in driving safety on tunnel hood. As a result, the information of sunglare effect should be noticed ahead of tunnel hood so this can prevent drivers from being in hazard situation.