• Title, Summary, Keyword: Mineral

Search Result 9,330, Processing Time 0.059 seconds

Mineral Resources Potential Mapping using GIS-based Data Integration

  • Lee Hong-Jin;Chi Kwang-Hoon;Park Maeng-Eon
    • Proceedings of the KSRS Conference
    • /
    • /
    • pp.662-663
    • /
    • 2004
  • In general, mineral resources prospect is performed in several methods including geological survey, geological structure analysis, geochemical exploration, airborne geophysical exploration and remote sensing, but data collected through these methods are usually not integrated for analysis but used separately. Therefore we compared various data integration techniques and generated final mineral resources potentiality map.

  • PDF

Effects of solution, sorbate, and sorbent chemistries on polycyclic aromatic hydrocarbon sorption to hydrated mineral surfaces

  • Yim, Soobin
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • /
    • pp.132-135
    • /
    • 2003
  • Solution chemistry, sorbate chemistry, and sorbent chemistry were widely investigated to find important factors that affect PAH sorption on mineral surfaces and to elucidate its microscopic mechanism. The solution chemistry, pH and ionic strength caused measurable change of HOC sorption reaction to minerals. The detectable change of Ka occurred at a pH region crossing the PZC (Point of Zero Charge) of each mineral. The PAH hydrophobicity, one of sorbate chemistry, was observed to have a strong correlation with PAM sorption to mineral. Mineral surface area was not found to be a predominant factor controlling PAH sorption. The mineral type might be more likely to play a crucial role in controlling the PAH sorption behavior. The CEC (Cation Exchange Capacity) of mineral, representing surface charge density, has meaningful correlation with regression slope of sorption coefficients (log $K_{d}$) versus aqueous activity coefficients (log Υ$_{w}$).).).

  • PDF

SUBPIXEL UNMIXING TECHNIQUE FOR DETECTION OF USEFUL MINERAL RESOURCES USING HYPERSPECTRAL IMAGERY

  • Hyun, Chang-Uk;Park, Hyeong-Dong
    • Proceedings of the KSRS Conference
    • /
    • /
    • pp.66-67
    • /
    • 2008
  • Most mineral resources are located in subsurface but mineral exploration starts with a step of investigation in wide-area to find evidence of buried ores. Conventional technique for exploration on wide-area as a preliminary survey is an observation using naked eyes by geologist or chemical analysis using lots of samples obtained from target area. Hyperspectral remote sensing can overcome those subjective and time consuming survey and can produce mineral resources distribution map. Precise resource map requires information of mineral distribution in a subpixellevel because mineral is distributed as rock components or narrow veins. But most hyperspectral data is composed of pixels of several meters or more than ten meters scale. We reviewed subpixel unmixing algorithms which have been used for geological field and tested detection ability with Hyperion imagery, geological map and seven spectral curves of mineral and rock specimens which were obtained from study areas.

  • PDF

Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang Earthquake

  • Gihm, Yong Sik;Kim, Sung Won;Ko, Kyoungtae;Choi, Jin-Hyuck;Bae, Hankyung;Hong, Paul S.;Lee, Yuyoung;Lee, Hoil;Jin, Kwangmin;Choi, Sung-ja;Kim, Jin Cheul;Choi, Min Seok;Lee, Seung Ryeol
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.871-880
    • /
    • 2018
  • During and shortly after the 2017 Pohang Earthquake ($M_w$ 5.4), sand blows were observed around the epicenter for the first time since the beginning of instrumental seismic recording in South Korea. We carried out field surveys plus satellite and drone imagery analyses, resulting in observation of approximately 600 sand blows on Quaternary sediment cover in this area. Most were observed within 3 km of the epicenter, with the farthest being 15 km away. In order to investigate the ground's susceptibility to liquefaction, we conducted a trench study of a 30 m-long sand blow in a rice field 1 km from the earthquake epicenter. The physical characteristics of the liquified sediments (grain size, impermeable barriers, saturation, and low overburden pressure) closely matched the optimum ground conditions for liquefaction. Additionally, we found a series of soft sediment deformation structures (SSDSs) within the trench walls, such as load structures and water-escaped structures. The latter were vertically connected to sand blows on the surface, reflecting seismogenic liquefaction involving subsurface deformation during sand blow formation. This genetic linkage suggests that SSDS research would be useful for identifying prehistoric damage-inducing earthquakes ($M_w$ > 5.0) in South Korea because SSDSs have a lower formation threshold and higher preservational potential than geomorphic markers formed by surface ruptures. Thus, future combined studies of Quaternary surface faults and SSDSs are required to provide reliable paleoseismological information in Korea.