• Title, Summary, Keyword: Metal electrode

Search Result 1,209, Processing Time 0.027 seconds

Effect of Various ${\prod}$Type Metal Electrode in the AC PDP (AC PDP에서 다양한 형태의 ${\prod}$형 금속방전유지 전극의 효과)

  • Yoo, Su-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.586-590
    • /
    • 2009
  • Recently, an AC Plasma Display Panels(PDP) with the metal sustain electrodes have been reported in order to reduce the manufacturing cost of the AC PDP. However, the luminance and efficacy of the AC PDP with metal electrodes are worse than those of the AC PDP with ITO electrodes. In this paper, various ${\prod}$type metal electrodes are suggested, in order to improve the electro-optical characteristics of the AC PDP with metal electrodes. Among the suggested electrode types, luminance of Hump electrode structure is higher by $40\;cd/m^2$ and discharge current of Asymmetry electrode structure is lower by 5% than those of Pi electrode structure, respectively. Moreover, $T_1$ of Hump electrode structure is reduced to 10% as compared with Pi electrode structure in address period for ADS driving scheme. In all aspects, the characteristics of Hump and Asymmetry electrode structure show best performance.

A Study on the Cost and Efficacy Improvement of AC PDP (AC PDP의 Cost 및 효율 개선에 관한 연구)

  • Shin, Joong-Hong;Lee, Don-Kyu;Yoon, Cho-Rom;Heo, Jeong-Eun;Park, Chung-Hoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.239-244
    • /
    • 2008
  • In order to improve cost and efficacy of AC PDP with metal discharge electrodes, a new II-type metal electrodes are suggested. The suggested asymmetrical II-type metal electrode is improved in the luminance, power and efficacy than the conventional metal electrode by 7.5%, 6%, and 14%, respectively. The efficacy of the suggested asymmetrical II-type metal electrode is almost the same with the conventional ITO electrode. Moreover, the address time of the II-type metal electrode is shorter than the conventional ITO electrode.

A Study on the Fabrication of Periodic Holes on Metal Electrode for Electrodeionization System Application (전기탈이온시스템 응용을 위한 주기적 홀을 갖는 금속 전극 제작에 관한 연구)

  • Yeo, Jong-Bin;Sun, Sang-Wook;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.227-231
    • /
    • 2013
  • Electrodeionization is a hybrid separation process of electrodialysis and ion exchange to produce high purity water under electric field. This article provides a fabrication result of hole patterned metal electrode for elecrodeionization system. The hole patterns have been fabricated by nanosphere lithography (NSL). The technique utilizes the self-assembled nanospheres as lens-mask patterns and collimated laser beam source. The hole patterns have a periodic array structure. The images of hole pattern on metal electrode prepared were observed by SEM. We believe that the periodic hole patterned metal electrode structure is a useful device applicable for metal mat electrode in electrodeionization system.

Efficiency Improvement of Metal-Mesh Electrode Type Photoelectrochemical Cells by Oxides Layer Coatings (산화물박막 증착에 의한 금속 메쉬전극 구조 광전기화학셀의 효율 개선에 관한 연구)

  • Han, Chi-Hwan;Park, Seon-Hee;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.584-587
    • /
    • 2011
  • In this work, the $TiO_2$ and $SnO_2$ thin films as blocking layers were coated directly onto the metal-mesh electrode surface to prevent unnecessary inflow of back-transfer electrons from the electrolyte ($I^-/I_3^-$) to the metal-mesh electrode. The DSCs were fabricated with working electrode of SUS mesh coated with blocking $TiO_2$ and $SnO_2$ layers, dye-attached mesoporous $TiO_2$ film, gel electrolyte and counter electrode of Pt-deposited F:$SnO_2$. From the experimental result, it was ascertained that the efficiency of metal electrode coated with $TiO_2$ by Dip-coating was superior to that of metal electrode coated with $SnO_2$ by Dip-coating and screen printing with the results of experiments. The photo-current conversion efficiency of the cell obtained from optimum fabrication condition was 3% ($V_{oc}$=0.61V, $J_{sc}$=11.64 mA/$cm^2$, ff=0.64) under AM1.5, 100 mW/$cm^2$ illumination.

Implementation of Wireless ECG Measurement System Attaching in Chair for Ubiquitous Health Care Environment (유비쿼터스 헬스 케어 적용을 위한 의자 부착형 무선 심전도 측정 시스템 구현)

  • Ye, Soo-Young;Baik, Seong-Wan;Kim, Jee-Chul;Jeon, Gye-Rok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.776-781
    • /
    • 2008
  • In this study, ubiquitous health care system attaching in chair to monitor ECG for health care was developed at the unconsciousness state. The system conveniently and simple measured ECG at non-consciousness. We measured the contact impedance to skin-electrode of metal mesh electrodes of the system. Contact impedance enable the electrode to use for ECG measurement. The results are that the impedance of the metal mesh electrodes according to sizes is low when the size is 4$cm^2$. As the result, when the size of the metal mesh electrode is 4$cm^2$, the electrode is fit for ECG measurement. We can acquired by positing the arm on the metal mesh electrode. The ECG signal was detected using a high-input-impedance bio-amplifier, and then passed filter circuitry. The measured signal transmitted to a PC through the bluetooth wireless communication and monitored. Data of the non-constrained ECG system attaching in chair is noise-data when comparing metal mesh electrode with the Ag/Agcl electrode but the data is significant to monitor ECG for check the body state.

The TRC Test for Cold Crack Susceptibility of Welded Zone for ABS EH32 Steel (인장구속 균열시험에 의한 ABS EH 32강 용접부 저온 균열 감수성 시험)

  • 정수원;박동환;김대헌
    • Journal of Welding and Joining
    • /
    • v.2 no.2
    • /
    • pp.62-69
    • /
    • 1984
  • In this study, cold crack susceptibility of high strength steel (ABS EH32 Steel) welded zone with shielded metal are welding was investigated by tensile restraint cracking test method. Effects of diffusible hydrogen content on root cracking, lower critical stress, crack initiation and fracture mode, hardness value distribution of welded zone and fractograph were mainly investigated. Following conclusions are made: 1. In the view of the lower critical stress level, wet electrode, containing much diffusible hydrogen content shows lower value than dried electrode. 2. Hardness value(Hv 5kg) in Heat Affected Zone of wet electrode is higher than that of dried electrode caused by hydrogen embrittlement. 3. In the case of wet electrode, root crack is initiated and propagated in Heat Affected Zone and then propagated to weld metal, but using of dried electrode, root crack is initiated in Heat Affected Zone and propagated to weld metal without propagating in HAZ. 4. For wet electrode, quasi-cleavage fracture mode is majorly observed on the fracture surface of HAZ and partially of weld metal due to hydrogen embrittlement.

  • PDF

Integrated Microdisk Gold Electrode Modified with Metal-porphyrin and Metal-phthalocyanines for Nitric Oxide Determination in Biological Media

  • Kim, Il-Kwang;Bae, Hyun-Ok;Oh, Gi-Soo;Chung, Hun-Taeg;Kim, Young-Jin;Chun, Hyun-Ja
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1579-1584
    • /
    • 2003
  • An integrated gold microdisk electrode was constructed and modified with metal-porphyrin or metal-phthalocyanines for NO determination in biological media. Microanalysis of NO using square wave anodic stripping voltammetry in $1\;{\times}\;10^{-2}$ M $HClO_4$ was optimal when the accumulation potential was 0.1 V, frequency 100 Hz, and the scan rate was 200 mV/s. When the electrode was modified with metal-porphyrin or metal-phthalocyanines, the anodic peak currents of NO increased due to the catalytic oxidation of NO. In case of Fe(II)-phthalocyanine modified electrode, the peak currents remarkably increased and the sensitivity was high. The calibration curve had good linearity in the range from $3.6\;{\times}\;10^{-5}$ M to $7.2\;{\times}\;10^{-7}$ M, and the detection limit was $5.7\;{\times}\;10^{-7}$ M. For the structural stability and increased sensitivity, Fe(II)-phthalocyanine modified gold microdisk electrode coated with Nafion was applied to determination of NO released from cultured macrophase.

Improvement of Luminous Efficacy in AC PDP with Asymmetric Metal Electrode Structure (AC PDP의 효율 향상을 위한 비대칭형 금속전극구조)

  • Dong, Eun-Joo;Ok, Jung-Woo;Yoon, Cho-Rom;Lee, Hae-June;Lee, Ho-Joon;Park, Chung-Hoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.660-667
    • /
    • 2008
  • To improve the luminous efficacy of PDPs, an AC PDP with new metal electrode structure is suggested. Operating voltage margin, power consumption, luminance, luminous efficacy, addressing jitter and ICCD image of test panel with proposed structure are measured, to compared with performances of the conventional ITO structure and proposed structures. To enhance luminous efficacy, we designed new structure which have asymmetric metal electrode structure. The experimental results show that the suggested structure shows luminance to maximum 89% and luminous efficacy to maximum 107% compared with conventional ITO standard structure. In addition, proposed structures with asymmetric electrode show low power consumption by $2{\sim}3%$, high luminance by $5{\sim}7%$, and high luminous efficacy by $2{\sim}3%$ compared with proposed symmetric electrode structures.

An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors

  • Shinde, Nanasaheb M.;Yun, Je Moon;Mane, Rajaram S.;Mathur, Sanjay;Kim, Kwang Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.407-418
    • /
    • 2018
  • Increasing demand for portable and wireless electronic devices with high power and energy densities has inspired global research to investigate, in lieu of scarce rare-earth and expensive ruthenium oxide-like materials, abundant, cheap, easily producible, and chemically stable electrode materials. Several potential electrode materials, including carbon-based materials, metal oxides, metal chalcogenides, layered metal double hydroxides, metal nitrides, metal phosphides, and metal chlorides with above requirements, have been effectively and efficiently applied in electrochemical supercapacitor energy storage devices. The synthesis of self-grown, or in-situ, nanostructured electrode materials using chemical processes is well-known, wherein the base material itself produces the required phase of the product with a unique morphology, high surface area, and moderate electrical conductivity. This comprehensive review provides in-depth information on the use of self-grown electrode materials of different morphologies in electrochemical supercapacitor applications. The present limitations and future prospects, from an industrial application perspectives, of self-grown electrode materials in enhancing energy storage capacity are briefly elaborated.

Ionic Wind Generation Characteristics of a Water-Pen Point-to-Mesh Type Discharge System (수침대 그물전극형 방전장치의 이온풍 발생특성)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.783-787
    • /
    • 2009
  • A point-to-mesh type discharge system, utilizing a water-pen point as a corona discharge electrode and a mesh as an ion induction electrode, has been proposed, and the effect of the water-pen point electrode of the discharge system to the ionic wind velocity and generation yield was investigated. It was observed that the proposed discharge system with the water-pen point electrode can generate a higher ionic wind velocity as compared with that of the metal point electrode. As a result, the peak ionic wind velocities of 2.61 and 4.05 m/s for the positive and negative corona discharges of the proposed discharge system can be obtained, which are 1.39 and 1.15 times higher than those of the metal point electrode with same design. The ionic wind generation yield of 4.72 m/s/W of the discharge system with the water-pen point electrode was obtained for the positive corona, which was 3.66 times higher than that of the metal point electrode. This enhancement may be due to the effect of the water-pen point electrode.