• 제목, 요약, 키워드: MR damper

검색결과 370건 처리시간 0.042초

우등버스용 MR 댐퍼의 실험적 모델링 (Experimental Modeling of MR Damper for Cruise Bus)

  • 손정현;전철웅
    • 대한기계학회논문집A
    • /
    • v.35 no.8
    • /
    • pp.863-867
    • /
    • 2011
  • 본 논문에서는 우등버스용 MR 댐퍼의 특성 시험 결과를 분석하고, 비선형 히스테리시스 특성을 모델링할 수 있는 실험적 모델링이 제시된다. MR 댐퍼의 인가전류에 따른 실험적 모델을 구성하고, 매트랩의 최적설계 툴 박스를 이용하여 계수를 규명한다. 우등버스의 전차량 시뮬레이션을 통하여 차량동역학 해석용 MR 댐퍼의 실험적 모델의 유용성을 검증한다.

MR댐퍼를 적용한 철도차량의 안정성 해석 (Stability Analysis of Railway Vehicle Featuring MR Damper)

  • 하성훈;최승복;유원희
    • 한국소음진동공학회논문집
    • /
    • v.18 no.7
    • /
    • pp.732-740
    • /
    • 2008
  • This paper presents vibration control performances and stability evaluations of railway vehicle featuring controllable magnetorheological(MR) damper. The MR damper model is developed and then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid viscosity and MR effect Design parameters are determined to achieve desired damping force level applicable to real railway vehicle. Subsequently, computer simulation of vibration control and stability analysis is performed using Matlab Simulink.

영구자석을 이용한 전단모드 MR 댐퍼 설계 및 해석 (Design and Analysis of Magneto-Rheological Damper Using Permanent Magnet)

  • 김완호;칼루반 수레쉬;박진하;최상민;박춘용;강제원;최승복
    • 한국소음진동공학회논문집
    • /
    • v.26 no.4
    • /
    • pp.443-448
    • /
    • 2016
  • A novel Permanent Magnet based Magneto Rheological (PM-MR) damper is proposed in this paper. The principle of proposed MR damper is achieved by designing a linearly varying magnetization area with-respect to the movable permanent magnetic based piston setup. Nowadays, commercially available MR damper uses electromagnetic coils for generating the variable magnetic fields corresponding to the variable damping force. The amount of magnetic field produced by the electromagnetic coils are depends on the biasing current of voltage source. The key enabling concept of the proposed MR damper is to replace the electromagnetic coils and the voltage sources by utilizing the variable area based permanent magnetic piston setup. The proposed unique design structure of PM-MR damper has an increasing shear mode damping force with the piston movement in both jounce and rebound motion. In this research, analytical model of the proposed structure is derived and the structural design of proposed concept is verified using numerical CAD tool. As a result, the damping force is increase when piston movement in both jounce and rebound motion.

MR 댐퍼를 이용한 전자제어 현가장치의 승차감 평가 (Ride Comfort Evaluation of Electronic Control Suspension Using a Magneto-rheological Damper)

  • 성금길;최승복
    • 한국소음진동공학회논문집
    • /
    • v.23 no.5
    • /
    • pp.463-471
    • /
    • 2013
  • This paper presents design and control of electronic control suspension(ECS) equipped with controllable magnetorheological(MR) damper for passenger vehicle. In order to achieve this goal, a cylindrical type MR fluid damper that satisfies design specification of a middle-sized commercial passenger vehicle is proposed. After manufacturing the MR damper with design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of a conventional damper. A quarter-vehicle MR ECS system consisting of sprung mass, spring, tire, controller and the MR damper is established in order to investigate the ride comfort performances. On the basis of the governing equation of motion of the suspension system, five control strategies(soft, hard, comfort, sport and optimal mode) are formulated. The proposed control strategies are then experimentally realized with the quarter-vehicle MR ECS system. Control performances such as vertical acceleration of the car body and tire deflection are evaluated in frequency domains on random road condition. In addition, performance comparison of WRMS(weighted root mean square) of the quarter-vehicle MR ECS system on random road are undertaken in order to investigate ride comfort characteristics.

구조물의 진동 제어를 위한 압착식 MR 감쇠기의 동적 모델링 (Dynamic Modeling of Semi-active Squeeze Mode MR Damper for Structural Vibration Control)

  • 허광희;전준용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • v.13 no.2
    • /
    • pp.172-180
    • /
    • 2009
  • 일반적으로 MR 감쇠기를 이용한 준능동 제어 시스템을 구축하기 위해서는 감쇠장치의 동적모델이 요구된다. 여기서, 동적모델링은 감쇠장치의 발생 감쇠력 및 거동 성향 등을 수치적으로 예측하는 것이다. 따라서 본 연구에서는 이러한 MR 감쇠기의 동적거동을 실무적인 관점에서 합리적으로 모델링하기 위하여 다양한 동적모델 중 Power 모델 및 Bingham 모델을 적용해 MR 감쇠기의 동적거동특성을 예측 평가하였다. 이때 활용한 MR 감쇠기의 실험결과는 압착식 형태로 개발된 MR 감쇠기를 대상으로 동하중 실험을 수행하여 획득하였으며, 힘-변위 이력곡선으로부터 준능동 제어장치로의 타당성을 확인하였다. 또한, 각 동적모델의 예측성능을 평가하기 위하여 우선 실험결과를 이용해 각 동적모델 별 모델변수를 규명하였고, 이를 바탕으로 힘-속도 관계곡선 및 예측된 발생 감쇠력의 오차율을 산출하여 개발된 압착식 MR 감쇠기의 실험결과와 상호 비교 평가하였다. 최종적으로 본 연구에서 개발한 압착식 MR 감쇠기는 준능동 제어장치로 활용 가능함을 확인하였고, 평가된 두 가지 동적모델은 모두 우수한 예측성능을 보임으로써 본 연구에서 개발한 압착식 MR 감쇠기는 물론 MR유체를 이용한 다양한 형태의 감쇠장치의 거동특성을 수치적으로 예측하기 위하여 간단히 활용될 수 있는 가능성을 제시하였다.

MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 수치해석적 연구 (Numerical Study of Hybrid Base-isolator with Magnetorheological Damper and Friction Pendulum System)

  • 김현수
    • 한국지진공학회논문집
    • /
    • v.9 no.2
    • /
    • pp.7-15
    • /
    • 2005
  • 본 연구에서는 하이브리드 면진장치가 설치된 단자유도 구조물의 동적거동을 예측할 수 있는 수치해석모델을 제안한다. 하이브리드 면진장치는 MR 감쇠기와 마찰진자시스템(FPS)으로 구성된다. MR감쇠기의 동적거동을 모형화하기 위하여 뉴로-퍼지 모델을 사용한다. 다양한 변위, 속도, 전압의 조합을 사용하여 MR 감쇠기의 성능실험을 수행한 후 얻어진 데이터를 이용하여 MR 감쇠기 뉴로-퍼지 모델을 ANFIS로 학습시킨다. FPS의 모형화는 본 연구에서 유도한 비선형 모델식에 근거하여 뉴로-퍼지 모형화방법을 사용하여 이루어진다. 본 연구에서는 MR 감쇠기로 전달되는 제어전압을 조절하기 위하여 퍼지논리제어기를 사용한다. 다양한 지진하중을 사용한 진동대 실험을 통하여 얻은 실험체의 동적응답과와 뉴로-퍼지 모형화방법을 사용한 수치해석의 결과를 비교한다. 뉴로-퍼지 모델을 사용하여 MR 감쇠기와 FPS를 모형화해서 수치해석을 수행한 결과 하이브리드 면진장치의 동적거동을 매우 정확하게 예측할 수 있었다.

Experimental calibration of forward and inverse neural networks for rotary type magnetorheological damper

  • Bhowmik, Subrata;Weber, Felix;Hogsberg, Jan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.673-693
    • /
    • 2013
  • This paper presents a systematic design and training procedure for the feed-forward back-propagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output, an optimization procedure demonstrates accurate training of the NN architecture with only current and velocity as input states. For the inverse damper model, with current as output, the absolute value of velocity and force are used as input states to avoid negative current spikes when tracking a desired damper force. The forward and inverse damper models are trained and validated experimentally, combining a limited number of harmonic displacement records, and constant and half-sinusoidal current records. In general the validation shows accurate results for both forward and inverse damper models, where the observed modeling errors for the inverse model can be related to knocking effects in the measured force due to the bearing plays between hydraulic piston and MR damper rod. Finally, the validated models are used to emulate pure viscous damping. Comparison of numerical and experimental results demonstrates good agreement in the post-yield region of the MR damper, while the main error of the inverse NN occurs in the pre-yield region where the inverse NN overestimates the current to track the desired viscous force.

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

Design formulas for vibration control of taut cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie.F. Jr.;Ko, Jan-Ming;Fang, Yi
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.521-536
    • /
    • 2019
  • Using magnetorheological (MR) dampers in multiswitch open-loop control mode has been shown to be cost-effective for cable vibration mitigation. In this paper, a method for analyzing the damping performance of taut cables incorporating MR dampers in open-loop control mode is developed considering the effects of damping coefficient, damper stiffness, damper mass, and stiffness of the damper support. Making use of a three-element model of MR dampers and complex modal analysis, both numerical and asymptotic solutions are obtained. An analytical expression is obtained from the asymptotic solution to evaluate the equivalent damping ratio of the cable-damper system in the open-loop control mode. The individual and combined effects of the damping coefficient, damper stiffness, damper mass and stiffness of damper support on vibration control effectiveness are investigated in detail. The main thrust of the present study is to derive a general formula explicitly relating the normalized system damping ratio and the normalized damper parameters in consideration of all concerned effects, which can be easily used for the design of MR dampers to achieve optimal open-loop vibration control of taut cables.

MR 댐퍼를 이용한 철도차량 승차감 반능동 제어 (Semi-Active Control for Improving Ride Comfort in Railway Vehicle by MR Damper)

  • 신유정;유원희;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • /
    • pp.1929-1934
    • /
    • 2011
  • Recently the maximum speed becomes the most important performance in high speed train. But the speed up of train will not give the passenger good riding comfort. The semi-active suspension system by using variable damper with hydraulic solenoid valve is used to solve this problem. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. In this study, the MR(Magneto Rheological) damper was considered instead of hydraulic variable damper in order to improve riding comfort. Dynamic simulation was conducted for semi-active suspension system with MR damper was made by using Matlab-Simulink S/W. According to control strategy of MR damper for improving ride comfort in railway vehicle, The riding comfort of the railway vehicle with semi-active suspension system was analyzed and compared with conventional suspension system by using the program.

  • PDF