• Title/Summary/Keyword: MODSIM-DSS

Search Result 3, Processing Time 0.263 seconds

Assessment of Agricultural Water Supply Capacity Using MODSIM-DSS Coupled with SWAT (SWAT과 MODSIM-DSS 모형을 연계한 금강유역의 농업용수 공급능력 평가)

  • Ahn, So Ra;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.507-519
    • /
    • 2013
  • This study is to evaluate agricultural water supply capacity in Geum river basin (9,865 $km^2$), one of the 5 big river basin of South Korea using MODSIM-DSS (MODified SIMyld-Decision Support System) model. The model is a generalized river basin decision support system and network flow model developed at Colorado State University designed specifically to meet the growing demands and pressures on river basin management. The model was established by dividing the basin into 14 subbasins and the irrigation facilities viz. agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were grouped and networked within each subbasin and networked between subbasins including municipal and industrial water supplies. To prepare the inflows to agricultural reservoirs and multipurpose dams, the Soil and Water Assessment Tool (SWAT) was calibrated using 6 years (2005-2010) observed dam inflow and storage data. By MODSIM run for 8 years from 2004 to 2011, the agricultural water shortage had occurred during the drought years of 2006, 2008, and 2009. The agricultural water shortage could be calculated as 282 $10^6m^3$, 286 $10^6m^3$, and 329 $10^6m^3$ respectively.

Assessment of water supply stability in Yeongsan river basin by river water use using MODSIM-DSS (MODSIM-DSS를 이용한 영산강유역의 하천수 사용에 따른 용수공급 안정성 평가)

  • Kim, Sehoon;Lee, Jiwan;Jung, Chunggil;Kim, Wonjin;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.107-107
    • /
    • 2021
  • 본 연구에서는 유역간 물 공급 및 분배 모형인 MODSIM-DSS를 이용하여 영산강 유역(3,371.4 km2)의 전반적인 용수공급 능력을 평가하고, 용수부족 발생 시 하천수사용허가를 통한 용수부족 완화 평가를 수행하였다. MODSIM-DSS 설계 시 생공 및 농업용수 수요량을 고려하여 8개의 중권역으로 구분하였으며, 모형의 유역별 유입량(공급량) 자료는 SWAT 모형의 소유역별 유출 결과를 사용하였다. MODSIM-DSS를 통한 41개년(1980~2020) 동안의 물수지 분석을 수행한 결과 생공용수의 공급능력은 95.4~100%, 농업용수의 공급능력은 57.1~85.8%로 생공용수의 공급 능력이 가장 높은 것으로 분석되었다. 실제 연평균 강수량 898.3 mm로 가뭄 해였던 1988년의 경우, 생공 및 농업용수 부족량은 각각 16×106m3, 457.5×106m3로 분석되었으며 41개년 중 생공용수부족이 가장 크게 나타났다. 농업용수의 경우 457.5×106m3 이상 발생한 연도는 1983년, 1994년, 1995년, 2015년, 2017년으로 각각 463.0×106m3, 485.6×106m3, 531.4×106m3, 484.5×106m3, 459.1×106m3로 분석되었으며, 농업용수 공급가능률은 41개년 평균 71.7%보다 낮은 62.6%, 60.8%, 57.1%, 60.9%, 62.9%로 나타났다.

  • PDF

Methodology for assessment and forecast of drought severity based on the water balance analysis (물수지 분석에 기반한 가뭄 심각도 평가 및 예측 방법)

  • Jang, Ock-Jae;Moon, Young-Il;Moon, Hyeon-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.4
    • /
    • pp.241-254
    • /
    • 2021
  • Drought is a natural disaster which is hard to recognize its onset and termination and to estimate the damage from the events which occurred in the past and are expected in near future. While the drought indices or their frequencies are widely applied to explain the severity of each event in the existing studies, decision-makers and stakeholders (the public) may have trouble in understanding the results due to the unfamiliar expression with statistical values. In this study, therefore, the methodology for assessment and forecast of drought severity based on the amount of water shortage from the water balance analysis was be placed at the center of the discussion. Firstly, in order to improve the existing analysis for drought assessment adopted in the National Water Resources Plan, alternative methods have been suggested to estimate the amount of water demand in each sub-basin using the land use map, and in an aspect of water supply, reservoirs and underground water are included in the simulation of MODSIM-DSS. The relationship between drought severity from the simulated water shortage in the study area and the values of SPEIs (SPEI 6 = estimated for 6 months - winter and spring season, SPEI 3 = estimated for 3 months - summer season) has been analyzed by the Decision tree. Due to this achievement, at the end of the spring season, every year the forecast for the drought severity will be available with the quantitatively estimated water shortage, and it will be helpful to activate the drought mitigation measures before the disaster occurs.