• Title, Summary, Keyword: MOCVD

Search Result 768, Processing Time 0.057 seconds

Effect of air-contaminated TiN on the deposition characteristics of Cu film by MOCVD (공기 중에 노출된 MOCVD TiN 기판이 MOCVD Cu 증착에 미치는 효과)

  • Choe, Jeong-Hwan;Byeon, In-Jae;Yang, Hui-Jeong;Lee, Won-Hui;Lee, Jae-Gap
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.482-488
    • /
    • 2000
  • The deposition characteristics of Cu film by MOCVD using (hfac)Cu(1,5-COD)(1,1,1,5,5,5-hexafluro-2,4-pentadionato Cu(I) 1,5-cryclooctadiene) as a precursor have been investigated in terms of substrate conditions. Two different substrates such as air-exposed TiN and non-contaminated TiN were used for the MOCVD of Cu. MOCVD of Cu on the air-exposed TiN affected the nucleation rate of Cu as well as its growth, resulting in the Cu films having poor interconnection between particles with relatively small grains. On the other hand, in-situ MOCVD of Cu led to the Cu films having a significantly improved interconnection between particles with larger grains, indicating the resistivity as low as $2.0{\mu}{\Omega}-cm$ for the films having more than 1900$\AA$ thickness. Moreover, better adhesion of Cu films to the TiN by using in-situ MOCVD has been obtained. Finally, initial coalescence mechanism of Cu was suggested in this paper in terms of different substrate conditions by observing the surface morphology of the Cu films deposited by MOCVD.

  • PDF

DC-Pulse Plasma와 Thermal MOCVD방법으로 증착된 TiN 박막의 특성에 관한 연구

  • 박용균;이영섭;정수종;신희수;조동율;천희곤
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • /
    • pp.27-27
    • /
    • 2000
  • TDEAT precursor를 이용하여 DC-Pulse Plasma MOCVD 방법과 Thermal MOCVD 방법으로 각각 TiN 박막을 증착하였다. 본 논문에서는 DC-Pulse Plasma MOCVD 방 법으로 증착된 TiN 박막과 Therrnal MOCVD 방법으로 증착된 TiN 박막의 전기적 특성에 관하여 비교 분석하였다. 동일한 조건 하에서 각각의 방법으로 증착된 박막은 4-point probe를 이용하여 면저항을 측정하였고, XRD를 이용하여 박막의 성장방향을 관찰하였으며, FE-SEM을 이용하여 박막의 두께와 단면 사진, 표면형상을 관찰하였으며, AES depth profile을 통해 두께에 따른 Ti, N, 잔류 C와 0의 함량을 분석하였으며, XPS를 통해 C의 결합형태를 파악하고자 하였다. 분석결과 DC-Pulse Plasma MOCVD 방법으로 증착된 TiN 박막이 Thermal MOCVD 방법으로 증착된 TiN 박막에 비해 전기적 특성은 매우 우수하였으며, 치밀한 구조의 박막을 가지는 것으로 나타났다. 또한, 잔류 C, O의 함량이 낮은 것으로 나타났다.

  • PDF

Copper MOCVD using catalytic surfactant : Novel concept

  • Hwang, Eui-Seong;Lee, Jihwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.30-30
    • /
    • 1999
  • 알루미늄에 비해 전기저항이 낮고 electromigration 및 stress-migration에 대한 저항서이 높은 구리는 차세대 반도체 소자의 배선금속 재료로 여겨지고 있다. 최근 Chemical Mechanical Polishing (CMP) 기술의 도래로 구리배선 공정의 채택이 더욱 앞당겨질 전망이다. 한편, 구리 MOCVD를 위해 다양한 전구체화합물이 합성되었고, 근래에는 Cu(I)(hfc)L (L은 Lewis base 형태의 ligand) 형태의 전구체를 이용한 많은 증착 연구를 통하여 순수하고 전기저항이 낮은 구리 박막의 증착이 보고되었다. 구리 MOCVD의 가장 큰 문제점은 증착속도가 150-$^{\circ}C$20$0^{\circ}C$에서 500$\AA$/min 이하로 낮고 또한 증착된 필름 표면이 매우 거칠다는 데 있다. 이러한 단점으로 인해 전기화학적 증착후 CMP를 적용하는 것이 더욱 경제적이라는 견해가 우세해 지고 있다. 본 강연에서는 박막의 증착 속도와 표면 거칠기를 동시에 향사시키기 위해 catalytic surfactant를 이용한 새로운 MOCVD 개념을 도입하고, 구리 MOCVD에서 단원자층으로 흡착된 요오드 원자가 그 역할을 수행할 수 있음을 보이겠다. 또 요오드원자가 표면반응을 어떻게 수정하여 활성화에너지를 낮추는가를 반응메카니즘으로 밝히고 표면 평탄화의 미시적 해석을 제공하고자 한다. Catalytic Surfactant의 개념은 다른 박막 재료의 MOCVD에도 적용될 수 있으며, 나아가 적절한 기판 표면처리를 통하여 epitaxy도 가능할 것으로 본다.

  • PDF

The Characteristics of Titanium Oxide Films Deposited by the Nozzle-type HCP RT-MOCVD (노즐 형태 HCP RT-MOCVD에 의해 증착된 티타늄 산화막 특성)

  • Jung, Il-hyun
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.194-200
    • /
    • 2006
  • Titanium oxide films were deposited by the nozzle type HCP RT-MOCVD for the application of metal-oxide films. In the case of TTNB, after depositing films, films must be annealed at a proper temperature, but in the case of titanium ethoxide, titanium oxide films could be directly deposited by titanium ethoxide without general annealing. We could confirm that ratio of O to Ti in the films was about 2 : 1 at RF-power of 240 watt, distance between cathode and substrate of 3 cm, deposition time of 20 min, and ratio of Ar to $O_2$ of 1 : 1. Therefore, we could obtain the titanium oxide film deposited by the nozzle type HCP RT-MOCVD without an annealing process and could apply in the metal-oxide deposition process at a low temperature.

A Study of carrier gas and ligand addition effect on MOCVD Cu film deposition (운반기체와 Ligand의 첨가가 MOCVD Cu 증착에 미치는 영향에 관한 연구)

  • 최정환;변인재;양희정;이원희;이재갑
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.197-206
    • /
    • 2000
  • The deposition characteristics of MOCVD Cu using the (hfac)Cu(1,1-COD)(1,1,1,5,5,5-hexafluoro-2,4-pentadionato Cu(I) 1,5-cyclooctadine) have been investigated in terms of the effects of carrier gas such as hydrogen and argon as well as the effects of H(hfac) ligand addition. MOCVD Cu using a hydrogen carrier gas led to a higher deposition rate and lower resistivity than an argon carrier gas system. The improvement in the surface roughness of the MOCVD Cu films and the (111) preferred orientation texture was obtained by using a hydrogen carrier gas. However, the adhesion characteristics of the films showed relatively weaker compared to the Ar carrier gas system, probably due to the larger amount of F content in the films, which was confirmed by the AES analyses. When an additional H(hfac) ligand was added, the deposition rate was significantly enhanced in the case of an argon + H(hfac) carrier gas system while significant change in the deposition rate of MOCVD Cu was not observed in the case of the hydrogen carrier gas system. However, the addition of H(hfac) in both carrier gases led to lowering the resistivity of the MOCVD Cu films. In conclusion, this paper suggests the deposition mechanism of MOCVD Cu and is expected to contribute to the enhancement of smooth Cu films with a low resistivity by manipulating the deposition conditions such as the carrier gas and addition of H(hfac) ligand.

  • PDF

Effects of epilayer growth temperature on properties of undoped GaN epilayer on sapphire substrate by two-step MOCVD (2단계 MOCVD법에 의해 사파이어 기판 위 성장된 undoped GaN 에피박막의 특성에 미치는 고온성장 온도변화의 영향)

  • Chang K.;Kwon M. S.;Cho S. I.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.222-228
    • /
    • 2005
  • Undoped GaN epitaxial layer was grown on c-plane sapphire substrate by a two-step growth with metalorganic chemical vapor deposition(MOCVD). We have investigated the effects of the variation of final growth temperature on surface morphology, roughness, crystal quality, optical property, and electrical property In a horizontal MOCVD reactor, the film was grown at 300 Tow low-pressure with a fixed nucleation temperature of $500^{\circ}C$, varing the final growth temperature from $850\~1050^{\circ}C$ . The undoped GaN epilayers were characterized by atomic force microscopy, high-resolution x-ray diffractometer, photoluminescence, and Hall effect measurement.

A Study on Fabrication and Properties of the GaAs/Si Solar Cell Using MOCVD (MOCVD를 이용한 GAs/Si 태양전지의 제작과 특성에 관한 연구)

  • Cha, I.S.;Lee, M.G.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.137-146
    • /
    • 1998
  • In this paper, the current status of manufacturing technologies for GaAs/Si solar cell were revived and provied new MOCVD. In the manufacturing process of GaAs/Si solar cells and an experiment to get the high efficiency GaAs solar cells, we must investigate the optimum growth conditions to get high quality GaAs films on Si substrates by MOCVD. The GaAs on Si substrates has been recognized as a lightweight alternative to pure substrate for space applicaton. Because its density is less the half of GaAs or Ge.So GaAs/Si has twofold weight advantage to GaAs monolithic cell. The theoretical conversion efficiecy limit of tandem GaAs/Si solar cell is 32% under AM 0 and $25^{\circ}C$ condition. It was concluded that the development of cost effective MOCVD technologies shoud be ahead GaAs solar cells for achived move high efficiency III-V solar cells involving tandem structure.

  • PDF

Self- and Artificially-Controlled ZnO Nanostructures by MOCVD (MOCVD을 이용하여 자발적 및 인위적으로 제어된 산화아연 나노구조)

  • Kim, Sang-Woo;Fujita, Shizuo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.9-10
    • /
    • 2005
  • We report on the fabrication and characterization of self- and artificially-controlled ZnO nanostructures have been investigated to establish nanostructure blocks for ZnO-based nanoscale device application. Systematic realization of self- and artificially-controlled ZnO nanostructures on $SiO_2/Si$ substrates was proposed and successfully demonstrated utilizing metalorganic chemical vapor deposition (MOCVD) in addition with a focused ion beam (FIB) technique. Widely well-aligned two-dimensional ZnO nanodot arrays ($4{\sim}10^4$ nanodots of 130-nm diameter and 9-nm height over $150{\sim}150{\mu}m^2$ with a period of 750 nm) have been realized by MOCVD on $SiO_2/Si$ substrates patterned by FIB. A low-magnification FIB nanopatterning mode allowed the periodical nanopatterning of the substrates over a large area in a short processing time. Ga atoms incorporated into the surface areas of FIB-patterned nanoholes during FIB engraving were found to play an important role in the artificial control of ZnO, resulting in the production of ZnO nanodot arrays on the FIB-nanopatterned areas. The nanodots evolved into dot clusters and rods with increasing MOCVD growth time.

  • PDF