• Title, Summary, Keyword: Low Molecular Ginsenoside

Search Result 14, Processing Time 0.033 seconds

Enhancement of Low Molecular Ginsenoside Contents in Low Quality Fresh Ginseng by Fermentation Process (등외품 인삼(파삼)의 유산균 발효에 의한 저분자 진세노사이드 함량 증진)

  • Choi, Woon-Yong;Lee, Choon-Geun;Song, Chi-Ho;Seo, Yong-Chang;Kim, Ji-Seon;Kim, Bo-Hyeon;Shin, Dae-Hyun;Yoon, Chang-Soon;Lim, Hye-Won;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.2
    • /
    • pp.117-123
    • /
    • 2012
  • This study compared the contents of low molecular ginsenoside according to fermentation process in low grade fresh ginseng. Low grade fresh ginseng was directly inoculated with a 24 h seed culture of $Bifidobacterium$ Longum B6., $Lactobacillus$ $casei$., and incubated at $36^{\circ}C$ for 72 h. $Bifidobacterium$ Longum B6 was specifically was found to show the best growth on $3,255{\times}10^6\;CFU/m{\ell}$ after 48 h of fermentation. The content of ginsenoside Rb1, Re and Rd were decreased with the fermentation but ginsenoside Rh2 and Rg2 increased after fermentation process. In the case of low molecular ginsenoside conversion yields were 56.07% of Rh2, 12.03% of Rg3 and 77.11% of Rg2, respectively. In addition, compound-K was irregular conversion yield as long as 72 h of fermentation. This results indicate that fermentation process could increase the low molecular ginsenoside in low grade fresh ginseng.

Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3

  • Chang, Kyung Hoon;Jo, Mi Na;Kim, Kee-Tae;Paik, Hyun-Dong
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.47-51
    • /
    • 2014
  • The transformation of ginsenoside Rb1 into a specific minor ginsenoside using Aspergillus niger KCCM 11239, as well as the identification of the transformed products and the pathway via thin layer chromatography and high performance liquid chromatography were evaluated to develop a new biologically active material. The conversion of ginsenoside Rb1 generated Rd, Rg3, Rh2, and compound K although the reaction rates were low due to the low concentration. In enzymatic conversion, all of the ginsenoside Rb1 was converted to ginsenoside Rd and ginsenoside Rg3 after 24 h of incubation. The crude enzyme (b-glucosidase) from A. niger KCCM 11239 hydrolyzed the ${\beta}$-($1{\rightarrow}6$)-glucosidic linkage at the C-20 of ginsenoside Rb1 to generate ginsenoside Rd and ginsenoside Rg3. Our experimental demonstration showing that A. niger KCCM 11239 produces the ginsenoside-hydrolyzing b-glucosidase reflects the feasibility of developing a specific bioconversion process to obtain active minor ginsenosides.

Effects of Protopanaxatriol-Ginsenoside Metabolites on Rat $N$-Methyl-D-Aspartic Acid Receptor-Mediated Ion Currents

  • Shin, Tae-Joon;Hwang, Sung-Hee;Choi, Sun-Hye;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Zukin, R. Suzanne;Rhim, Hye-Whon;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.113-118
    • /
    • 2012
  • Ginsenosides are low molecular weight glycosides found in ginseng that exhibit neuroprotective effects through inhibition of $N$-methyl-D-aspartic acid (NMDA) receptor channel activity. Ginsenosides, like other natural compounds, are metabolized by gastric juices and intestinal microorganisms to produce ginsenoside metabolites. However, little is known about how ginsenoside metabolites regulate NMDA receptor channel activity. In the present study, we investigated the effects of ginsenoside metabolites, such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT), on oocytes that heterologously express the rat NMDA receptor. NMDA receptor-mediated ion current ($I_{NMDA}$) was measured using the 2-electrode voltage clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, PPT, but not CK or PPD, reversibly inhibited $I_{NMDA}$ in a concentration-dependent manner. The $IC_{50}$ for PPT on $I_{NMDA}$ was $48.1{\pm}4.6\;{\mu}M$, was non-competitive with NMDA, and was independent of the membrane holding potential. These results demonstrate the possibility that PPT interacts with the NMDA receptor, although not at the NMDA binding site, and that the inhibitory effects of PPT on $I_{NMDA}$ could be related to ginseng-mediated neuroprotection.

Effect of High Pressure and Steaming Extraction Processes on Ginsenosides Rg3 and Rh2 Contents of Cultured-Root in Wild Ginseng (Panax ginseng C. A. Meyer) (초고압 증숙처리가 산삼배양근의 진세노사이드 Rg3와 Rh2의 함량에 미치는 영향)

  • Choi, Woon-Yong;Lee, Choon-Geun;Seo, Yong-Chang;Song, Chi-Ho;Lim, Hye-Won;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.4
    • /
    • pp.270-276
    • /
    • 2012
  • This study was performed to enhance contents of low molecular weight ginsenoside Rh2 and Rg3 using an ultra high pressure and steaming process in wild cultured-Root in wild ginseng. For selective increase in contents of Rg3 and Rh2 in cultured wild ginseng roots, an ultra high extraction was applied at 500MPa for 20 min which was followed by steaming process at $90^{\circ}C$ for 12 hr. It was revealed that contents of ginsenosides, Rb1, Rb2, Rc and Rd, were decreased with the complex process described above, whereas contents of ginsenoside Rh2 and Rg3 were increased up to 4.918 mg/g and 6.115 mg/g, respectively. In addition, concentration of benzo[${\alpha}$]pyrene in extracts of the cultured wild ginseng roots treated by the complex process was 0.64 ppm but it was 0.78 ppm when it was treated with the steaming process. From the results, it was strongly suggested that low molecular weight ginsenosides, Rh2 and Rg3, are converted from Rb1, Rb2, Rc, and Rd which are easily broken down by an ultra high pressure and steaming process. This results indicate that an ultra high pressure and steaming process can selectively increase in contents of Rg3 and Rh2 in cultured wild ginseng roots and this process might enhance the utilization and values of cultured wild ginseng roots.

Enhancement of Ginsenosides Conversion Yield by Steaming and Fermentation Process in Low Quality Fresh Ginseng (증숙 발효 공정에 의한 파삼의 진세노사이드 전환 수율 증진)

  • Choi, Woon Yong;Lim, Hye Won;Choi, Geun Pyo;Lee, Hyeon Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2014
  • This study was performed to enhance contents of low molecular ginsenoside using steaming and fermentation process in low quality fresh ginseng. For increase in contents of Rg2, Rg3, Rh2 and CK in low quality fresh ginseng, a steaming process was applied at $90^{\circ}C$ for 12 hr which was followed by fermentation process at Lactobacillus rhamnosus HK-9 incubated at $36^{\circ}C$ for 72 h. The contents of ginsenoside Rg1, Rb1, Rc, Re and Rd were decreased with the steaming associated with fermentation process but ginsenoside Rg2, Rg3, Rh2 and CK increased after process. It was found that under the steaming associated with fermentation process, low molecule ginsenosides such as Rg2, Rg3, Rh2 and CK were increased as 3.231 mg/g, 2.585 mg/g and 1.955 m/g and 2.478 mg/g, respectively. In addition, concentration of benzo[${\alpha}$]pyrene in extracts of the low quality fresh ginseng treated by the complex process was 0.11 ppm but it was 0.22 ppm when it was treated with the steaming process. This result could be caused by that the most efficiently breakdown of 1,2-glucoside and 1,4-glucoside linkage to backbone of ginsenosides by steaming associated with fermentation process. This results indicate that steaming process and fermenration process can increase in contents of Rg2, Rg3, Rh2 and CK in low quality fresh ginseng.

Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848

  • Liu, Chun-Ying;Zhou, Rui-Xin;Sun, Chang-Kai;Jin, Ying-Hua;Yu, Hong-Shan;Zhang, Tian-Yang;Xu, Long-Quan;Jin, Feng-Xie
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.221-229
    • /
    • 2015
  • Background: Minor ginsenosides, those having low content in ginseng, have higher pharmacological activities. To obtain minor ginsenosides, the biotransformation of American ginseng protopanaxadiol (PPD)-ginsenoside was studied using special ginsenosidase type-I from Aspergillus niger g.848. Methods: DEAE (diethylaminoethyl)-cellulose and polyacrylamide gel electrophoresis were used in enzyme purification, thin-layer chromatography and high performance liquid chromatography (HPLC) were used in enzyme hydrolysis and kinetics; crude enzyme was used in minor ginsenoside preparation from PPD-ginsenoside; the products were separated with silica-gel-column, and recognized by HPLC and NMR (Nuclear Magnetic Resonance). Results: The enzyme molecular weight was 75 kDa; the enzyme firstly hydrolyzed the C-20 position 20-O-${\beta}$-D-Glc of ginsenoside Rb1, then the C-3 position 3-O-${\beta}$-D-Glc with the pathway $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}C-K$. However, the enzyme firstly hydrolyzed C-3 position 3-O-${\beta}$-D-Glc of ginsenoside Rb2 and Rc, finally hydrolyzed 20-O-L-Ara with the pathway $Rb2{\rightarrow}C-O{\rightarrow}C-Y{\rightarrow}C-K$, and $Rc{\rightarrow}C-Mc1{\rightarrow}C-Mc{\rightarrow}C-K$. According to enzyme kinetics, $K_m$ and $V_{max}$ of Michaelis-Menten equation, the enzyme reaction velocities on ginsenosides were Rb1 > Rb2 > Rc > Rd. However, the pure enzyme yield was only 3.1%, so crude enzyme was used for minor ginsenoside preparation. When the crude enzyme was reacted in 3% American ginseng PPD-ginsenoside (containing Rb1, Rb2, Rc, and Rd) at $45^{\circ}C$ and pH 5.0 for 18 h, the main products were minor ginsenosides C-Mc, C-Y, F2, and C-K; average molar yields were 43.7% for C-Mc from Rc, 42.4% for C-Y from Rb2, and 69.5% for F2 and C-K from Rb1 and Rd. Conclusion: Four monomer minor ginsenosides were successfully produced (at low-cost) from the PPD-ginsenosides using crude enzyme.

Extraction of Low Molecular Weight Ginsenosides from Adventitious Roots Culture of Wild Mountain Ginseng by Steam Processing (증숙 처리에 의한 산삼 부정 배양근의 저분자 진세노사이드 추출)

  • Lee, Ye Ji;Kim, Hee Kyu;Go, Eun Ji;Choi, Jae Hoo;Jo, Ah Reum;Kim, Chul Joong;Lee, Jae Geun;Lim, Jung Dae;Choi, Seon Kang;Yu, Chang Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.2
    • /
    • pp.148-156
    • /
    • 2018
  • Background: Hot steaming is known to be effective in improving the biological activities of plant extracts by breaking down useful compounds to low molecular weight ones. Methods and Results: This study aimed to develop an optimal extraction and steam processing method for enhancing the low molecular ginsenoside contents of the adventitious roots culture of wild mountain ginseng. The total ginsenoside was optimally extracted when 70% EtOH was used at $50^{\circ}C$, whereas low molecule ginsenoside such as Rg2, Rh1, Rh4 and Rk1 could be extracted using 70% EtOH at $70^{\circ}C$. The adventitious roots culture of wild mountain ginseng is known to contain four major ginsenosides, i.e., Rb2, Rb1, Rg1 and Rd, however new ginsenosides Rg6, Rh4, Rg3, Rk1 and Rg5 were new abundantly obtaind after steam processing method was applied. The contents of total ginsenosides were the highest when thermal steam processing was conducted at $120^{\circ}C$ for 120 min. Unlike ginsenosides such as Rg1, Re, Rb1, Rc, Rb2, and Rh1, which decreased after steam processing, Rg3, Rk1, and Rg5 increased after thermal processing. Steam processing significanltly reduced the content of Rb1, increased that of Rg6 by about ten times than that in the adventitious roots culture of wild mountain ginseng. Conclusions: Our study showed that the optimal extraction and steam processing method increased the content of total ginsenosides and allowed the extraction of minor ginsenosides from major ones.

Enzymatic Biotransformation of Ginsenoside Rb2 into Rd by Recombinant α-L-Arabinopyranosidase from Blastococcus saxobsidens

  • Kim, Ju-Hyeon;Oh, Jung-Mi;Chun, Sungkun;Park, Hye Yoon;Im, Wan Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.391-397
    • /
    • 2020
  • In this study, we used a novel α-L-arabinopyranosidase (AbpBs) obtained from ginsenoside-converting Blastococcus saxobsidens that was cloned and expressed in Escherichia coli BL21 (DE3), and then applied it in the biotransformation of ginsenoside Rb2 into Rd. The gene, termed AbpBs, consisting of 2,406 nucleotides (801 amino acid residues), and with a predicted translated protein molecular mass of 86.4 kDa, was cloned into a pGEX4T-1 vector. A BLAST search using the AbpBs amino acid sequence revealed significant homology with a family 2 glycoside hydrolase (GH2). The over-expressed recombinant AbpBs in Escherichia coli BL21 (DE3) catalyzed the hydrolysis of the arabinopyranose moiety attached to the C-20 position of ginsenoside Rb2 under optimal conditions (pH 7.0 and 40℃). Kinetic parameters for α-L-arabinopyranosidase showed apparent Km and Vmax values of 0.078 ± 0.0002 μM and 1.4 ± 0.1 μmol/min/mg of protein against p-nitrophenyl-α-L-arabinopyranoside. Using a purified AbpBs (1 ㎍/ml), 0.1% of ginsenoside Rb2 was completely converted to ginsenoside Rd within 1 h. The recombinant AbpBs could be useful for high-yield, rapid, and low-cost preparation of ginsenoside Rd from Rb2.

The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem cell-like properties through modulation of self-renewal signaling

  • Oh, Jisun;Yoon, Hyo-Jin;Jang, Jeong-Hoon;Kim, Do-Hee;Surh, Young-Joon
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.421-430
    • /
    • 2019
  • Background: The ginsenoside Rg3, one of active components of red ginseng, has chemopreventive and anticancer potential. Cancer stem cells retain self-renewal properties which account for cancer recurrence and resistance to anticancer therapy. In our present study, we investigated whether the standardized Korean Red Ginseng extract (RGE) and Rg3 could modulate the manifestation of breast cancer stem cell-like features through regulation of self-renewal activity. Methods: The effects of RGE and Rg3 on the proportion of $CD44^{high}/CD24^{low}$ cells, as representative characteristics of stem-like breast cancer cells, were determined by flow cytometry. The mammosphere formation assay was performed to assess self-renewal capacities of breast cancer cells. Aldehyde dehydrogenase activity of MCF-7 mammospheres was measured by the ALDEFLUOR assay. The expression levels of Sox-2, Bmi-1, and P-Akt and the nuclear localization of hypoxia inducible $factor-1{\alpha}$ in MCF-7 mammospheres were verified by immunoblot analysis. Results: Both RGE and Rg3 decreased the viability of breast cancer cells and significantly reduced the populations of $CD44^{high}/CD24^{low}$ in MDA-MB-231 cells. RGE and Rg3 treatment attenuated the expression of Sox-2 and Bmi-1 by inhibiting the nuclear localization of hypoxia inducible $factor-1{\alpha}$ in MCF-7 mammospheres. Suppression of the manifestation of breast cancer stem cell-like properties by Rg3 was mediated through the blockade of Akt-mediated self-renewal signaling. Conclusion: This study suggests that Rg3 has a therapeutic potential targeting breast cancer stem cells.

Fermentation of Red Ginseng using CKDHC 0801 and CKDHC 0802 (CKDHC 0801과 CKDHC 0802 균주를 이용한 홍삼발효)

  • Shin, Yong-Seo
    • Korean journal of food and cookery science
    • /
    • v.26 no.4
    • /
    • pp.469-474
    • /
    • 2010
  • In this study, we isolated two species of bacteria for the powerful biotrasnformation of ginsenosides from Kimchi and human feces. Using biochemical tests and 16s rRNA sequencing, the selected strains were identified as Latobacillusplantarum (CKDHC0801) and Lactobacillussakei (CKDHC0802). Changes in cell growth and pH were examined in red ginseng. CKDHC 0801 and CKDHC 0802 reached their maximum growth phase after 24 hr and 48 hr, respectively, whereas the combined culture of CKDHC 0801 and CKDHC 0802 showed higher cell growth than bacterial strain alone. During fermentation of CKDHC 0801 and the combined culture, the pH values decreased from 5.2 to 4.2 after 24 hr, but CKDHC 0802 reached pH of 4.2 after 3day. The identities of ginsenosides were biotransferred from high molecular (Rg1 and Rb2) to low molecular (Rg3, Rg5, Rk1, PPD) by fermentation of both bacteria. Therefore, the results of this study demonstrate that CKDHC 0801 and CKDHC 0802 could be used to enhance to effects of red ginseng.