• Title, Summary, Keyword: Long-term air monitoring

Search Result 78, Processing Time 0.073 seconds

Modeling and Evaluation on the Dispersion of Air Pollutants in the Large Scale Thermal Power Plant (대단위발전소의 대기오염물질 확산에 관한 모델링 및 평가에 관한 연구)

  • Chun, Sang-Ki;Lee, Sung-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.81-92
    • /
    • 1997
  • This paper presents the results from the comparison analysis and evaluation between the air pollutant dispersion modeling results and the observation data in the area within a 10 km radius from the Boryong thermal power plants. The observation data used in this study were the air pollutant concentrations which had been continuously measured from 8 locations around the Boryong power plants by TMS(tele-monitoring system) for 3 months from September to November, 1996. The short-term and long-term predictions were carried out using ISC3 model and LPDM(Lagrangian Panicle Dispersion Model). The results of ISC3 modeling in a short-term showed highly as 0.7 in a correlation coefficient, but in a long-term showed just 0.54. On the other hand, LPDM showed 0.78 in a correlation coefficient for a long-term, but in a short-term showed highly value than the observation concentrations.

  • PDF

Study on long-term monitoring of heat exchanger installed in the tunnel lining (터널 라이닝 내부에 설치한 열교환기의 현장모니터링 연구)

  • Lee, Chulho;Park, Moonseo;Choi, Hangseok;Sohn, Byunghu;Jeoung, Jaehyeung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.195.1-195.1
    • /
    • 2011
  • This paper presents an experimental study on a new potential geothermal energy source obtained from tunnel structures. An "energy textile", which is a textile-type ground heat exchanger, was fabricated between a shotcrete layer and a guided drainage geotextile in the tunnel lining system. To examine the long-term thermal behavior of the energy textile, the difference in temperatures of the inlet and outlet fluid circulating through the heat exchange pipe within the energy textile was monitored using a constant-temperature water bath. Daily heat exchange rate of the energy textile during cooling operation was estimated from the measured temperatures of the inlet and outlet fluid through the energy textile. The air and ground temperature was also continuously monitored. The operation of the energy textile as a ground heat exchanger was simulated using a 3D numerical CFD model (Fluent). The thermal conductivity of shotcrete and concrete lining components and temperature variation of air in the tunnel were incorporated in the model. The numerical analysis shows a good agreement with the long-term monitoring result.

  • PDF

Statistical Analysis for Ozone Long-term Trend Stations in Seoul, Korea (통계적 기법을 적용한 서울의 오존 장기변동 대표측정소 선정)

  • Shin, Hyejung;Park, Jihoon;Son, Jungseok;Rho, Soona;Hong, Youdeong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.111-118
    • /
    • 2015
  • This study was conducted for the establishment of statistical method to determine the representative air quality monitoring station representing long-term ozone trends of Seoul. In this study, hourly ozone concentrations from 2002 to 2011 were used for further analysis. KZ-filter, correlation matrix, cluster analysis, and Kriging method were applied to select the representative station. The analysis based on correlation matrix found that long-term trend of ozone concentrations measured at Sinjung, Sadang, and Bun-dong showed a high correlation. The cluster analysis found that the former three stations belonged to the same cluster. The analysis based on Kriging method also showed that the former three stations were highly correlated with other stations in spatial distribution. Considering these results and the highest correlation coefficient of Sinjung station, the Sinjung station was the most suitable as the representative station used to understand the long-term ozone trend of Seoul. This result could be applied to understand long-term trend of other pollutants. Furthermore, this result can also be used to assess the appropriacy of spatial distribution of national air quality monitoring stations.

The Modeling of the Differential Measurement of Air Pressure for Non-intrusive Sleep Monitoring Sensor System

  • Chee, Young-Joon;Park, Kwang-Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.373-381
    • /
    • 2005
  • The respiratory and heart beat signals are the fundamental physiological signals for sleep monitoring in the home. Using the air mattress sensor system, the respiration and heart beat movements can be measured without any harness or sensor on the subject's body which makes long term measurement difficult and troublesome. The differential measurement technique between two air cells is adopted to enhance the sensitivity. The concept of the balancing tube between two air cells is suggested to increase the robustness against postural changes during the measurement period. With this balancing tube, the meaningful frequency range could be selected by the pneumatic filter method. The mathematical model for the air mattress and balancing tube was suggested and the validation experiments were performed for step and sinusoidal input. The results show that the balancing tube can eliminate the low frequency component between two cells effectively. This technique was applied to measure the respiration and heart beat on the bed, which shows the potential applications for sleep monitoring device in home. With the analysis of the waveform, respiration intervals and heart beat intervals were calculated and compared with the signal from conventional methods. The results show that the measurement from air mattress with balancing tube can be used for monitoring respiration and heart beat in various situations.

State Monitoring of Compressor using AE Signal in Life Test (압축기의 수명실험에서의 AE 신호를 이용한 상태감시)

  • 정지홍;강명창;노태영;이감규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.56-60
    • /
    • 1997
  • The compressor is one of important elements in refrigeration cycle and play an important role of refrigeration efficiency and quality. This paper analyzes slides in rotary compressors for room air conditioners, monitoring using Acoustic Emission(AE) technique. Reliability of rotary compressors which are factory-tested has been evaluated through visual inspection on taking them apart after long term test, which is life test. This paper describes methods for acquisition and processing of Acoustic Emission(AE) raw signal to monitor state of rotary compressor in Life Test.

  • PDF

The Long Term Trends of Tropospheric Ozone in Major Regions in Korea

  • Shin, Hye Jung;Park, Ji Hoon;Park, Jong Sung;Song, In Ho;Park, Seung Myung;Roh, Soon A;Son, Jung Seok;Hong, You Deog
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.235-253
    • /
    • 2017
  • This study was conducted for analyzing the contribution factors on ozone concentrations and its long term trends in each major city and province in Korea through several statistical methods such as simple linear regression, generalized linear model, KZ-filer, correlation matrix, Kringing method, and cluster analysis. The overall ozone levels in South Korea have been consistently increasing over the past 10 years. The ozone concentrations in Seoul, the biggest city in Korea, are the lowest in all areas with the highest increasing ratio for $95^{th}%$ ozone. It is thought that the active photochemical reaction could affect the higher ozone concentration increase. On the other hand, the ozone concentrations in Jeju are the highest in Korea with the highest increasing ratio for $5^{th}%$, $33^{th}%$, and $50^{th}%$ ozone. It is also thought that the weak $NO_x$ titration could be the reason of higher ozone concentrations in Jeju. In case of Jeju, transport related factors is the major factor affecting the ozone trend. Thus, it is assumed that the variation of ozone trend of Asian region affecting the ozone trend in Jeju, where domestic ozone photochemical reaction is less active than urban area. It is thought that the photochemical reaction plays the role of increasing of ozone concentrations in the urban area, even though the LRT affected on the increase of ozone concentrations in non-urban area.

Damage detection of a cable-stayed bridge based on the variation of stay cable forces eliminating environmental temperature effects

  • Chen, Chien-Chou;Wu, Wen-Hwa;Liu, Chun-Yan;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.859-880
    • /
    • 2016
  • This study aims to establish an effective methodology for the detection of instant damages occurred in cable-stayed bridges with the measurements of cable vibration and structural temperatures. A transfer coefficient for the daily temperature variation and another for the long-term temperature variation are firstly determined to eliminate the environmental temperature effects from the cable force variation. Several thresholds corresponding to different levels of exceedance probability are then obtained to decide four upper criteria and four lower criteria for damage detection. With these criteria, the monitoring data for three stay cables of Ai-Lan Bridge are analyzed and compared to verify the proposed damage detection methodology. The simulated results to consider various damage scenarios unambiguously indicate that the damages with cable force changes larger than ${\pm}1%$ can be confidently detected. As for the required time to detect damage, it is found that the cases with ${\pm}2%$ of cable force change can be discovered in no more than 6 hours and those with ${\pm}1.5%$ of cable force change can be identified in at most 9 hours. This methodology is also investigated for more lightly monitored cases where only the air temperature measurement is available. Under such circumstances, the damages with cable force changes larger than ${\pm}1.5%$ can be detected within 12 hours. Even though not exhaustively reflecting the environmental temperature effects on the cable force variation, both the effective temperature and the air temperature can be considered as valid indices to eliminate these effects at high and low monitoring costs.