• Title, Summary, Keyword: Litter quality

Search Result 67, Processing Time 0.032 seconds

Performance of Growing-finishing Pigs Fed Diets Containing Graded Levels of Biotite, an Alumninosilicate Clay

  • Thacker, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1666-1672
    • /
    • 2003
  • The objective of this study was to evaluate the potential of an alumninosilicate clay, marketed under the trade name Biotite V, to improve growing-finishing pig performance and to determine its effects on nutrient digestibility and excretion. Sixty crossbred pigs (22.3${\pm}2.7kg$, Camborough 15 Line female${\times}$Canabred sire) were assigned on the basis of sex, weight and litter to one of four dietary treatments in a $2{\times}4$ (two sexes and four treatments) factorial design experiment. The experimental diets were based on barley and soybean meal and contained 0, 0.25, 0.5 or 0.75% biotite during the growing period (22.3-60.5 kg) and 0, 0.5, 1.0 or 1.5% biotite during the finishing period (60.5-110.3 kg). Each pig was allowed access to its own individual feeder for 30 min twice daily (07:00 and 15:00 h). Individual pig body weight, feed consumption and feed conversion were recorded weekly. The pigs were slaughtered at a commercial abattoir when they reached an average weight of 110.3 kg. Carcass weight was recorded and dressing percentage calculated. Carcass fat and lean measurements were obtained with a Destron PG 100 probe between the 3rd and 4th last ribs, 70 mm of the midline. Total tract digestibility coefficients for dry matter, energy, nitrogen and phosphorus were determined using three males and three females per treatment starting at an average weight of $52.2{\pm}3.8kg$. These pigs were housed under identical conditions as those used in the growing stage and were fed the same diets modified only by the addition of 0.5% chromic oxide as a digestibility marker. Over the entire experimental period (22.3-110.3 kg), daily gain was unaffected (p>0.05) by the inclusion of biotite in the diet. There was a cubic response for feed intake (p=0.06) and a quadratic response (p=0.07) for feed conversion due to biotite. Feeding biotite produced no significant (p>0.05) linear or quadratic effects on any of the carcass traits measured. Dry matter digestibility decreased linearly (p=0.02) with increasing levels of biotite in the diet. However, digestibility coefficients for energy, nitrogen and phosphorus were unaffected (p<0.05) by biotite inclusion. Lactobacilli and enterobacteria numbers were unaffected by inclusion of biotite while Salmonella was not detected in any of the fecal samples. The overall results of this experiment indicate that biotite inclusion did not reduce fecal excretion of nitrogen or phosphorus and failed to improve nutrient digestibility. Neither growth rate nor carcass quality was improved while a modest improvement in feed conversion was observed at lower levels of inclusion. Based on the results of this experiment, it would be difficult to justify the routine inclusion of biotite in diets fed to grower-finisher pigs. Whether or not a greater response would have been obtained with pigs of a lower health status is unknown.

Nitrate Removal Rate in Reed Wetland Cells of a Pond-Wetland Stream Water Treatment System (하천수정화 연못-습지 시스템의 갈대 습지셀 초기 질산성질소 제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.274-278
    • /
    • 2002
  • Nitrate removal rate in three wetland cells was examined. The acreage of each cell was 150 $m^2$. They were a part of a stream water treatment demonstration system which was composed of two ponds and six wetland cells. Earth works far the pond-wetland system were finished from April 2000 to May 2000 and reeds were planted in the three cells in May 2001. Waters of Sinyang Stream flowing into Kohung Esturiane Lake located southern coastal area of Korean Peninsula were pumped into a primary pont Effluents from a secondary pond were funneled into the three cells. Volumes and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 20 $m^3/d$ and 19.3 $m^3/d$, respectively. Hydraulic retention time was 1.5 days. Average influent and effluent nitrate concentration was 2.30 mg/L, 1.75 mg/L, respectively. Nitrate removal rate in the three cells averaged 80.9 $mg/m^2/day$. Seasonal changes of nitrate retention rates were closely related to those of wetland temperatures. Full growth of reeds within a few years can develope litter-soil substrates beneficial to the denitrification of nitrate, which may lead to increases of the nitrate retention rates.

Changes of Vegetation Structure according to the Hydro-seral Stages in the East Coastal Lagoons, Korea (동해안 석호에서 수생천이계열에 따른 식생구조의 변화)

  • Kim, Hyoe-Young;Kim, Mi-Hee;Choi, Hee-Kyung;Lyang, Doo-Yong;Shin, Eun-Joo;Lee, Kyu-Song;Yi, Hoon-Bok
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.129-144
    • /
    • 2010
  • We have studied the changes of the environmental and vegetational factors according to the hydro-seral stages in the shoreline of the lagoons, Korea. We have divided seral stages into 7 stages from open water stage to the stratified forest stage considering as the characteristics of water body, dominance of submerged and emergent plant, and development of the shrub, subtree and tree layer. According to the successional stage, water depth gradually decreased and water quality changed from seawater to brackish water and from brackish water to fresh water, organic matter in a soil layer gradually increased, and the litter layer grew up. As the development of the vegetation structure, the life-form of the vascular plants changed as follows; open water ${\rightarrow}$ submerged plant and floating-leaved plant ${\rightarrow}$ emergent plant and submerged plant ${\rightarrow}$ emergent plant ${\rightarrow}$ emergent plant, mesophyte and scrub ${\rightarrow}$ mesophyte. In the late seral stage, the 3 different forest types were established by the water retention or drainage and nutrient accumulation of the soil layer. Salix dominant forest developed in the wetted sites, the forest type dominated by Pinus thunbergii, Carex pumila and mesophytes developed in the well drained sites causing by sand substrate, and the forest type dominated by the planted or ruderals such as Pinus densiflora, Robinia psedo-acacia, Festuca ovina, Setaria viridis ect. developed in the sites composed of forest soil introduced by artificial reclamation.

Seasonal Dynamics of Enzymetic Activities and Functional Diversity in Soils under Different Organic Managements (시용 유기물을 달리한 토양에서 미생물 군락의 효소활성과 기능적 다양성의 계절적 변화)

  • Park, Kee-Choon;Kremer, Robert J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.307-316
    • /
    • 2009
  • Soil microbial activity and diversity are affected by organic sources applied to improve soil quality and fluctuate seasonally. We investigated the effects of municipal compost (MC), poultry litter (PL), and cover crops of spring oats and red clover (RC) on soil enzyme activities, and soil bacterial community-level physiological profiling (CLPP) in a Mexico silt loam in North Central Missouri, USA. Temporal patterns of these parameters were observed by periodic five soil sampling from spring to fall over a two year period. MC increased soil dehydrogenase (DH) activity consistently beginning about three months after MC application; fluorescein diacetate (FDA) hydrolytic activity significantly began to increase by the September of the first year but fluctuated during the following period. DH activity responded more directly to the amount or properties of organic residues in soils while FDA hydrolysis and CLPP were generally influenced by composition of organic sources, and enzyme activities and CLPP showed seasonal variation, which depended on organic sources and soil moisture. MC and cover crops may be useful organic sources for enhancing general soil microbial activity and altering soil microbial diversity, respectively. Because microbial activities and diversity are dynamic and subject to seasonal changes, the effects of organic amendments on these parameters should be investigated frequently during a growing season.

Effects of a Biological Amendment on Chemical and Biological Properties and Microbial Diversity in Soils Receiving Different Organic Amendments (각기 다른 유기물이 투여된 토양에서 토양의 화학적, 미생물학적 특성과 미생물의 다양성에 미치는 생물비료의 효과)

  • Park, Kee-Choon;Kremer, Robert J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.234-241
    • /
    • 2007
  • Biological amendments consisting of suspensions of selected microorganisms are often used in conjunction with various organic materials for amending soils to improve soil quality and plant growth. The effects of the biological amendment on chemical and biological properties of soil were investigated for a biological amendmentalone and when combined with different organic materials includingmunicipal compost (MC), poultry litter (PL), and cover crops (red clover (RC) and spring oats). A liquid preparation of a biological amendment called Effective Microorganisms was sprayed on the tested plots three times over a two-year period. Effective Microorganisms alone did not influence pH, K, or organic matter content in soil. However, increases in P in PL-treated soils in fall of both years andCa in MC-treated soil in fall 2001, and decreases in Ca, Mg, and cation exchange capacity (CEC) in RC-planted soil were associated with EM. Increased dehydrogenase(DH) activitiesassociated with Effective Microorganismswere only detected in July (P=0.0222) and October (P=0.0834) for RC-planted soils in the first year. Fluorescein diacetate (FDA) hydrolysisappeared to be enhanced by Effective Microorganisms in soils untreated or treated with MC and oatsbut only sporadically during the sampling period. FDA hydrolysis in both PL- and RC-treated soils as well as DH activity in PL-treated soils decreased with Effective Microorganisms treatment. Effective Microorganisms did not influence substrate utilization patterns expressed by the BIOLOG assay. We conclude that Effective Microorganisms effects on soil chemical and biological properties varied depending on the added organic materials. Effective Microorganisms periodically increased soil DH activity and FDA hydrolysis with RC and with MC plus oats, respectively.

Phosphorous Removal in a Free Water Surface Wetland Constructed on the Gwangju Stream Floodplain (광주천 고수부지에 조성한 자유수면인공습지의 인 제거)

  • Yang, Hong-Mo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.100-109
    • /
    • 2012
  • Removal rates of $PO_4-P$ and TP in a free water surface wetland system were investigated. The system was established in 2008 on a floodplain in the middle reach of the Gwangju Stream flowing through Gwangju City. Its dimensions were 46 meters in length and 5 meters in width. Two year old Typha angustifloria L. growing in pots were planted on half of the area and Zizania latifolia Turcz on the other half in 2008. Stream water was funneled into the wetlands by gravity flow, and its effluent was discharged back into the stream. The influent volume was controlled by valves and water depth was adjusted by wires. Volume and water quality of inflow and outflow were analyzed from January to December in 2010. Inflow into the system averaged approximately $710m^3/day$ and hydraulic residence time was about 1.5 hours. Average influent and effluent $PO_4-P$ concentration were 0.144 and 0.103mg/L, respectively, and $PO_4-P$ abatement amounted to 28.6%. Influent and effluent TP concentration averaged 0.333 and 0.262mg/L, respectively, and TP retention reached to 20.7%.$PO_4-P$ removal rate(%) during plant growing season(31.448) was significantly high(p<0.001) when compared with that during plant non-growing season(25.829). TP abatement rate(%) during plant growing season(27.230) was also significantly high(p<0.001) when compared with that of the non-growing season(14.856). Major phosphorous removals in the system resulted from adsorption of phosphorous in the litter-soil layers; sedimentation of particulate phosphorous and Ca, Al, Fe bounded phosphates; and absorption of phosphorous by emergent plants. The adsorption and sedimentation occurred throughout the year, however, the absorption took place during plant growing season. This resulted in higher removals of $PO_4-P$ and TP during plant growing season.

Effect of Ethephon and Diquat Dibromide Treatment for Triticale Seed Production on Paddy Field (트리티케일 종자 안정 생산을 위한 생장억제제 및 건조제 처리 효과)

  • Cho, Sang-Kyun;Park, Hyeong-Ho;Oh, Young-Jin;Cho, Kwang-Min;Jang, Yun-Woo;Song, Tae-Hwa;Park, Tae-Il;Kang, Hyun-Jung;Roh, Jae-Hwan;Park, Kwang-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • As for Ethephon treatment, the heading stage is 2 days later at the concentration of 250 ppm and 500 ppm for the booting stage that when there is no treatment, 4 days later at the concentration of 1000 or more ppm but no difference for the blossoming and ripening stage. The culm length get shorter as the concentration of Ethephon is higher and the rate of culm length damaged is 37% for 1500 ppm of booting stage, which is the most effective processing, and the inferior culm length damage rate is bigger than the superior culm length damage rate. There is no difference between the number of glumous flower, culm and litter weight and the non-processing and as for the thousand grain weight, it is slightly bigger than when there is not any processing. The rate of germination is indifferent, the number of seeds get numerous regardless of the concentration of treatment and the number augments by 5% maximum for the booting stage. The number of days it takes from treatment of desiccant to the moisture content for harvesting time is respectively 15 days for seeds of 30 day-treatment, 10 days for seeds of 35 days-treatment and 5 days for seeds of 40 to 45 day-treatment. As for the harvest time after treatment of desiccant, the treatment at $30^{th}$ days and $35^{th}$ after the earing is 8 days earlier than the culture by conventional methods, 8 days earlier for the treatment at $40^{th}$ day. When the desiccant treatment is implemented, the thousand grain weight is heavier as the number of days of treatment gets later. The rate of germination gets higher as the number of days of treatment after earing gets later but there is no statistically significant difference 35 days after the earing. Yields are 37% compared to the culture by conventional methods for the treatment of 30 days after the earing, 70% compared to the culture by conventional methods for the treatment of 35 days after the earing, and 92% compared to the culture by conventional methods for the treatment of 40 days after the earing. The treatment before the physiological maturity impacts greatly upon the quality of seeds.